We study a hybrid control system in which both discrete and continuous controls are involved. The discrete controls act on the system at a given set interface. The state of the system is changed discontinuously when the trajectory hits predefined sets, namely, an autonomous jump set A or a controlled jump set C where controller can choose to jump or not. At each jump, trajectory can move to a different euclidean space. We allow the cost functionals to be unbounded with certain growth and hence the corresponding value function can be unbounded. We characterize the value function as the unique viscosity solution of the associated quasivariational inequality in a suitable function class. We also consider the evolutionary, finite horizon hybrid control problem with similar model and prove that the value function is the unique viscosity solution in the continuous function class while allowing cost functionals as well as the dynamics to be unbounded.
Mots-clés : dynamic programming principle, viscosity solution, quasivariational inequality, hybrid control
@article{COCV_2010__16_1_176_0, author = {Barles, Guy and Dharmatti, Sheetal and Ramaswamy, Mythily}, title = {Unbounded viscosity solutions of hybrid control systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {176--193}, publisher = {EDP-Sciences}, volume = {16}, number = {1}, year = {2010}, doi = {10.1051/cocv:2008076}, mrnumber = {2598094}, zbl = {1183.49026}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2008076/} }
TY - JOUR AU - Barles, Guy AU - Dharmatti, Sheetal AU - Ramaswamy, Mythily TI - Unbounded viscosity solutions of hybrid control systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 176 EP - 193 VL - 16 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008076/ DO - 10.1051/cocv:2008076 LA - en ID - COCV_2010__16_1_176_0 ER -
%0 Journal Article %A Barles, Guy %A Dharmatti, Sheetal %A Ramaswamy, Mythily %T Unbounded viscosity solutions of hybrid control systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 176-193 %V 16 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008076/ %R 10.1051/cocv:2008076 %G en %F COCV_2010__16_1_176_0
Barles, Guy; Dharmatti, Sheetal; Ramaswamy, Mythily. Unbounded viscosity solutions of hybrid control systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 176-193. doi : 10.1051/cocv:2008076. https://www.numdam.org/articles/10.1051/cocv:2008076/
[1] A dynamical simulation facility for hybrid systems, in Workshop on Theory of Hybrid Systems, R.L. Grossman, A. Nerode, A.P. Rava and H. Rischel Eds., Lect. Notes Comput. Sci. 736, Springer, New York (1993) 255-267.
, and ,[2] Solutions de viscosité des équations de Hamilton Jacobi, Mathématiques et Applications 17. Springer, Paris (1994). | Zbl
,
[3] Uniqueness for Parabolic equations without growth condition and applications to the mean curvature flow in
[4] Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston (1997). | Zbl
and ,[5] Studies in hybrid systems: Modeling, analysis and control. Ph.D. Dissertation, Dept. Elec. Eng. Computer Sci., MIT Cambridge, USA (1995).
,[6] A unified framework for hybrid control problem. IEEE Trans. Automat. Contr. 43 (1998) 31-45. | Zbl
, and ,[7] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Soc. 27 (1992) 1-67. | Zbl
, and ,[8] Hybrid control system and viscosity solutions. SIAM J. Contr. Opt. 34 (2005) 1259-1288. | Zbl
and ,[9] Zero sum differential games involving hybrid controls. J. Optim. Theory Appl. 128 (2006) 75-102. | Zbl
and ,[10] Optimal control of hybrid systems with an infinite set of discrete states. J. Dyn. Contr. Syst. 9 (2003) 563-584. | Zbl
and ,[11] Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts. Adv. Differ. Equ. 6 (2001) 547-576. | Zbl
,[12] Smart cars on smart roads: problems of control. IEEE Trans. Automat. Contr. 38 (1993) 195-207.
,- Mathematical modelling and optimal control analysis of pandemic dynamics as a hybrid system, European Journal of Control, Volume 75 (2024), p. 100942 | DOI:10.1016/j.ejcon.2023.100942
- Hölder estimates for viscosity solutions of nonlocal equations with variable-order fractional Laplace term, Journal of Mathematical Analysis and Applications, Volume 538 (2024) no. 2, p. 128453 | DOI:10.1016/j.jmaa.2024.128453
- The minimum principle of hybrid optimal control theory, Mathematics of Control, Signals, and Systems, Volume 36 (2024) no. 1, p. 21 | DOI:10.1007/s00498-023-00374-1
- Deterministic differential games in infinite horizon involving continuous and impulse controls, Journal of Control and Decision (2023), p. 1 | DOI:10.1080/23307706.2023.2255594
- A Hybrid Dynamical Systems Perspective on Reinforcement Learning for Cyber-Physical Systems: Vistas, Open Problems, and Challenges, Handbook of Reinforcement Learning and Control, Volume 325 (2021), p. 727 | DOI:10.1007/978-3-030-60990-0_24
- On the Hybrid Minimum Principle: The Hamiltonian and Adjoint Boundary Conditions, IEEE Transactions on Automatic Control, Volume 66 (2021) no. 3, p. 1246 | DOI:10.1109/tac.2020.2992450
- Existence of optimal controls on hybrid time domains, Nonlinear Analysis: Hybrid Systems, Volume 31 (2019), p. 153 | DOI:10.1016/j.nahs.2018.07.005
- Hierarchical trajectory optimization for a class of hybrid dynamical systems, Automatica, Volume 77 (2017), p. 112 | DOI:10.1016/j.automatica.2016.11.040
- On the Relation Between the Minimum Principle and Dynamic Programming for Classical and Hybrid Control Systems, IEEE Transactions on Automatic Control, Volume 62 (2017) no. 9, p. 4347 | DOI:10.1109/tac.2017.2667043
- A Class of Linear Quadratic Gaussian Hybrid Optimal Control Problems with Realization–Independent Riccati Equations, IFAC-PapersOnLine, Volume 50 (2017) no. 1, p. 2205 | DOI:10.1016/j.ifacol.2017.08.282
- Hybrid optimal control of an electric vehicle with a dual-planetary transmission, Nonlinear Analysis: Hybrid Systems, Volume 25 (2017), p. 263 | DOI:10.1016/j.nahs.2016.08.004
- Viscosity Solutions of Hybrid Game Problems with Unbounded Cost Functionals, International Game Theory Review, Volume 18 (2016) no. 01, p. 1550016 | DOI:10.1142/s0219198915500164
- , 2015 54th IEEE Conference on Decision and Control (CDC) (2015), p. 2567 | DOI:10.1109/cdc.2015.7402603
- On the Relation between the Hybrid Minimum Principle and Hybrid Dynamic Programming: a Linear Quadratic Example, IFAC-PapersOnLine, Volume 48 (2015) no. 27, p. 169 | DOI:10.1016/j.ifacol.2015.11.170
- Monotone Numerical Schemes and Feedback Construction for Hybrid Control Systems, Journal of Optimization Theory and Applications, Volume 165 (2015) no. 2, p. 507 | DOI:10.1007/s10957-014-0637-0
- , 53rd IEEE Conference on Decision and Control (2014), p. 19 | DOI:10.1109/cdc.2014.7039353
- On the Minimum Principle and Dynamic Programming for Hybrid Systems, IFAC Proceedings Volumes, Volume 47 (2014) no. 3, p. 9629 | DOI:10.3182/20140824-6-za-1003.02700
- Transmission conditions on interfaces for Hamilton–Jacobi–Bellman equations, Journal of Differential Equations, Volume 257 (2014) no. 11, p. 3978 | DOI:10.1016/j.jde.2014.07.015
- Level-Set Approach for Reachability Analysis of Hybrid Systems under Lag Constraints, SIAM Journal on Control and Optimization, Volume 52 (2014) no. 1, p. 606 | DOI:10.1137/120874205
- , 52nd IEEE Conference on Decision and Control (2013), p. 3831 | DOI:10.1109/cdc.2013.6760474
Cité par 20 documents. Sources : Crossref