We prove that every sturmian word has infinitely many prefixes of the form where and In passing, we give a very simple proof of the known fact that every sturmian word begins in arbitrarily long squares.
Mots-clés : sturmian word, block-complexity, stammering word
@article{ITA_2009__43_3_615_0, author = {Dubickas, Art\={u}ras}, title = {Squares and cubes in sturmian sequences}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {615--624}, publisher = {EDP-Sciences}, volume = {43}, number = {3}, year = {2009}, doi = {10.1051/ita/2009005}, mrnumber = {2541133}, zbl = {1176.68150}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2009005/} }
TY - JOUR AU - Dubickas, Artūras TI - Squares and cubes in sturmian sequences JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 615 EP - 624 VL - 43 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2009005/ DO - 10.1051/ita/2009005 LA - en ID - ITA_2009__43_3_615_0 ER -
%0 Journal Article %A Dubickas, Artūras %T Squares and cubes in sturmian sequences %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 615-624 %V 43 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2009005/ %R 10.1051/ita/2009005 %G en %F ITA_2009__43_3_615_0
Dubickas, Artūras. Squares and cubes in sturmian sequences. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 3, pp. 615-624. doi : 10.1051/ita/2009005. http://archive.numdam.org/articles/10.1051/ita/2009005/
[1] On the complexity of algebraic numbers I. Expansion in integer bases. Ann. Math. 165 (2007) 547-565. | MR
and ,[2] Dynamics for -shifts and Diophantine approximation. Ergod. Theory Dyn. Syst. 27 (2007) 1695-1711. | MR | Zbl
and ,[3] On patterns occuring in binary algebraic numbers. Proc. Amer. Math. Soc. 136 (2008) 3105-3109. | MR | Zbl
and ,[4] Transcendence of Sturmian or morphic continued fractions. J. Number Theory 91 (2001) 39-66. | MR | Zbl
, , and ,[5] Automatic sequences, Theory, applications, generalizations. CUP, Cambridge (2003). | MR | Zbl
and ,[6] On the index of Sturmian words. In Jewels are Forever, Contributions on theoretical computer science in honor of Arto Salomaa, J. Karhumäki et al., eds. Springer, Berlin (1999) 287-294. | MR | Zbl
,[7] Combinatorics on words - a tutorial, in Current trends in theoretical computer science, The challenge of the new century, Vol. 2, Formal models and semantics, G. Paun, G. Rozenberg, A. Salomaa, eds. World Scientific, River Edge, NJ (2004) 415-475. | MR | Zbl
and ,[8] Initial powers of Sturmian sequences. Acta Arith. 122 (2006) 315-347. | MR | Zbl
, and ,[9] On extremal properties of the Fibonacci word. RAIRO-Theor. Inf. Appl. 42 (2008) 701-715. | Numdam | MR | Zbl
,[10] Sequences with minimal block growth. Math. Syst. Theor. 7 (1973) 138-153. | MR | Zbl
and ,[11] For each there is an infinite binary word with critical exponent , Electron. J. Combin. 15 (2008) 5 p. | MR
and ,[12] Sturmian words: structure, combinatorics and their arithmetics. Theoret. Comput. Sci. 183 (1997) 45-82. | MR | Zbl
,[13] Uniform spectral properties of one-dimensional quasicrystals, III 212 (2000) 191-204. | MR | Zbl
, and ,[14] Powers of a rational number modulo cannot lie in a small interval (to appear). | MR
,[15] Transcendence of numbers with low complexity expansion. J. Number Theory 67 (1997) 146-161. | MR | Zbl
and ,[16] Determination of by its sequence of differences. Canad. Math. Bull. 21 (1978) 441-446. | MR | Zbl
, and ,[17] On continued fractions, substitutions and characteristic sequences. Jpn J. Math. 16 (1990) 287-306. | MR | Zbl
and ,[18] Return words in Sturmian and episturmian words. RAIRO-Theor. Inf. Appl. 34 (2000) 343-356. | Numdam | MR | Zbl
and ,[19] Every real number greater than 1 is a critical exponent. Theoret. Comput. Sci. 381 (2007) 177-182. | MR
and ,[20] Algebraic combinatorics on words, Encyclopedia of Mathematics and Its Applications, Vol. 90. CUP, Cambridge (2002). | MR | Zbl
,[21] An unsolved problem on the powers of . J. Austral. Math. Soc. 8 (1968) 313-321. | MR | Zbl
,[22] On the number of factors of Sturmian words. Theoret. Comput. Sci. 82 (1991) 71-84. | MR | Zbl
,[23] Symbolic dynamics II: Sturmian sequences. Amer. J. Math. 62 (1940) 1-42. | JFM | MR
and ,[24] Substitutions in dynamics, arithmetics and combinatorics. Lect. Notes Math. 1794 (2002). | MR | Zbl
,[25] Beatty sequences, continued fractions, and certain shift operators. Canad. Math. Bull. 19 (1976) 473-482. | MR | Zbl
,[26] Sturmian words and words with a critical exponent. Theoret. Comput. Sci. 242 (2000) 283-300. | MR | Zbl
,[27] A characterization of Sturmian words by return words. Eur. J. Combin. 22 (2001) 263-275. | MR | Zbl
,Cité par Sources :