The algebraic counterpart of the Wagner hierarchy consists of a well-founded and decidable classification of finite pointed -semigroups of width and height . This paper completes the description of this algebraic hierarchy. We first give a purely algebraic decidability procedure of this partial ordering by introducing a graph representation of finite pointed -semigroups allowing to compute their precise Wagner degrees. The Wagner degree of any -rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed -semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every degree of this hierarchy.
Mots clés : $\omega $-automata, $\omega $-rational languages, $\omega $-semigroups, infinite games, hierarchical games, Wadge game, Wadge hierarchy, Wagner hierarchy
@article{ITA_2009__43_3_463_0, author = {Cabessa, J\'er\'emie and Duparc, Jacques}, title = {A game theoretical approach to the algebraic counterpart of the {Wagner} hierarchy : part {II}}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {463--515}, publisher = {EDP-Sciences}, volume = {43}, number = {3}, year = {2009}, doi = {10.1051/ita/2009007}, mrnumber = {2541208}, zbl = {1175.03022}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2009007/} }
TY - JOUR AU - Cabessa, Jérémie AU - Duparc, Jacques TI - A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part II JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 463 EP - 515 VL - 43 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2009007/ DO - 10.1051/ita/2009007 LA - en ID - ITA_2009__43_3_463_0 ER -
%0 Journal Article %A Cabessa, Jérémie %A Duparc, Jacques %T A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part II %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 463-515 %V 43 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2009007/ %R 10.1051/ita/2009007 %G en %F ITA_2009__43_3_463_0
Cabessa, Jérémie; Duparc, Jacques. A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part II. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 3, pp. 463-515. doi : 10.1051/ita/2009007. http://archive.numdam.org/articles/10.1051/ita/2009007/
[1] An infinite game over -semigroups, in Foundations of the Formal Sciences V, Infinite Games, edited by S. Bold, B. Löwe, T. Räsch, J. van Benthem. Studies in Logic 11. College Publications, London (2007) 63-78. | MR | Zbl
and ,[2] Chains and superchains in -semigroups, edited by Almeida Jorge et al., Semigroups, automata and languages. Papers from the conference, Porto, Portugal (1994) June 20-24. World Scientific, Singapore (1996) 17-28. | MR | Zbl
and ,[3] Chains and superchains for -rational sets, automata and semigroups. Int. J. Algebra Comput. 7 (1997) 673-695. | MR | Zbl
and ,[4] The Wagner hierarchy. Int. J. Algebra Comput. 9 (1999) 597-620. | MR | Zbl
and ,[5] Wadge hierarchy and Veblen hierarchy. Part I: Borel sets of finite rank. J. Symbolic Logic 66 (2001) 56-86. | MR | Zbl
,[6] A hierarchy of deterministic context-free -languages. Theoret. Comput. Sci. 290 (2003) 1253-1300. | MR | Zbl
,[7] Wadge hierarchy and Veblen hierarchy. Part II: Borel sets of infinite rank (to appear). | Zbl
,[8] The missing link for -rational sets, automata, and semigroups. Int. J. Algebra Comput. 16 (2006) 161-185. | Zbl
and ,[9] An effective extension of the Wagner hierarchy to blind counter automata. In Computer Science Logic (Paris, 2001); Lect. Notes Comput. Sci. 2142 (2001) 369-383. | Zbl
,[10] Borel ranks and Wadge degrees of context free omega languages. In New Computational Paradigms, First Conference on Computability in Europe, CiE. Lect. Notes Comput. Sci. 2142 (2005) 129-138. | Zbl
,[11] Classical descriptive set theory, Graduate Texts in Mathematics 156. Springer-Verlag, New York (1995). | Zbl
,[12] Set theory. An introduction to independence proofs. 2nd print. Studies in Logic and the Foundations of Mathematics 102. North-Holland (1983) 313. | Zbl
,[13] Application of model theoretic games to discrete linear orders and finite automata. Inform. Control 33 (1977) 281-303. | MR | Zbl
,[14] Descriptive set theory. Studies in Logic and the Foundations of Mathematics 100. North-Holland Publishing Company (1980) 637. | MR | Zbl
,[15] First-order logic and star-free sets. J. Comput. System Sci. 32 (1986) 393-406. | MR | Zbl
and ,[16] Infinite words. Pure Appl. Mathematics 141. Elsevier (2004). | Zbl
and ,[17] Varieties of formal languages. North Oxford, London and Plenum, New-York (1986). | MR | Zbl
,[18] Fine hierarchy of regular -languages. Theoret. Comput. Sci. 191 (1998) 37-59. | MR | Zbl
,[19] Star-free regular sets of -sequences. Inform. Control 42 (1979) 148-156. | MR | Zbl
,[20] Reducibility and determinateness on the Baire space. Ph.D. thesis, University of California, Berkeley (1983).
,[21] On -regular sets. Inform. Control 43 (1979) 123-177. | MR | Zbl
,[22] An Eilenberg theorem for -languages. In Automata, languages and programming (Madrid, 1991). Lect. Notes Comput. Sci. 510 (1991) 588-599. | MR | Zbl
,[23] Computing the Wadge degree, the Lifshitz degree, and the Rabin index of a regular language of infinite words in polynomial time. In TAPSOFT '95: Theory and Practive of Software Development, edited by Peter D. Mosses, M. Nielsen, M.I. Schwartzbach. Lect. Notes Comput. Sci. 915 (1995) 288-302.
and ,Cité par Sources :