We show that Dejean’s conjecture holds for . This brings the final resolution of the conjecture by the approach of Moulin Ollagnier within range of the computationally feasible.
Mots-clés : Dejean's conjecture, repetitions in words, fractional exponent
@article{ITA_2009__43_4_775_0, author = {Currie, James and Rampersad, Narad}, title = {Dejean{\textquoteright}s conjecture holds for $\sf {N\ge 27}$}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {775--778}, publisher = {EDP-Sciences}, volume = {43}, number = {4}, year = {2009}, doi = {10.1051/ita/2009017}, mrnumber = {2589992}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2009017/} }
TY - JOUR AU - Currie, James AU - Rampersad, Narad TI - Dejean’s conjecture holds for $\sf {N\ge 27}$ JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 775 EP - 778 VL - 43 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2009017/ DO - 10.1051/ita/2009017 LA - en ID - ITA_2009__43_4_775_0 ER -
%0 Journal Article %A Currie, James %A Rampersad, Narad %T Dejean’s conjecture holds for $\sf {N\ge 27}$ %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 775-778 %V 43 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2009017/ %R 10.1051/ita/2009017 %G en %F ITA_2009__43_4_775_0
Currie, James; Rampersad, Narad. Dejean’s conjecture holds for $\sf {N\ge 27}$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 4, pp. 775-778. doi : 10.1051/ita/2009017. http://archive.numdam.org/articles/10.1051/ita/2009017/
[1] Uniformly growing -th powerfree homomorphisms. Theoret. Comput. Sci. 23 (1983) 69-82. | MR | Zbl
,[2] Non-repetitive sequences on three symbols. Quart. J. Math. Oxford 34 (1983) 145-149. | MR | Zbl
,[3] On Dejean's conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137-151. | MR | Zbl
,[4] Dejean’s conjecture holds for . Theoret. Comput. Sci. 410 (2009) 2885-2888. | MR | Zbl
and ,[5] A proof of Dejean's conjecture, http://arxiv.org/pdf/0905.1129v3. | Zbl
, ,[6] Sur un théorème de Thue. J. Combin. Theory Ser. A 13 (1972) 90-99. | MR | Zbl
,[7] A generalization of repetition threshold. Theoret. Comput. Sci. 345 (2005) 359-369. | MR | Zbl
, and ,[8] On critical exponents in fixed points of non-erasing morphisms. Theoret. Comput. Sci. 376 (2007) 70-88. | MR | Zbl
,[9] Combinatorics on Words, Encyclopedia of Mathematics and its Applications 17. Addison-Wesley, Reading (1983). | MR | Zbl
,[10] Repetitions in the Fibonacci infinite word. RAIRO-Theor. Inf. Appl. 26 (1992) 199-204. | Numdam | MR | Zbl
and ,[11] Dejean's conjecture and Sturmian words. Eur. J. Combin. 28 (2007) 876-890. | MR | Zbl
and ,[12] Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters. Theoret. Comput. Sci. 95 (1992) 187-205. | MR | Zbl
,[13] À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7 (1984) 297-311. | MR | Zbl
,[14] Last cases of Dejean's Conjecture, http://www.labri.fr/perso/rao/publi/dejean.ps.
,[15] Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 7 (1906) 1-22. | JFM
,[16] Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 1 (1912) 1-67. | JFM
,Cité par Sources :