In a previous paper, we have described the construction of an automaton from a rational expression which has the property that the automaton built from an expression which is itself computed from a co-deterministic automaton by the state elimination method is co-deterministic. It turned out that the definition on which the construction is based was inappropriate, and thus the proof of the property was flawed. We give here the correct definition of the broken derived terms of an expression which allow to define the automaton and the detailed full proof of the property.
Mots-clés : finite automata, regular expression, derivation of expressions, quotient of automata
@article{ITA_2010__44_3_339_0, author = {Lombardy, Sylvain and Sakarovitch, Jacques}, title = {Corrigendum to our paper : {How} expressions can code for automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {339--361}, publisher = {EDP-Sciences}, volume = {44}, number = {3}, year = {2010}, doi = {10.1051/ita/2010019}, mrnumber = {2761523}, zbl = {1216.68148}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2010019/} }
TY - JOUR AU - Lombardy, Sylvain AU - Sakarovitch, Jacques TI - Corrigendum to our paper : How expressions can code for automata JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2010 SP - 339 EP - 361 VL - 44 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2010019/ DO - 10.1051/ita/2010019 LA - en ID - ITA_2010__44_3_339_0 ER -
%0 Journal Article %A Lombardy, Sylvain %A Sakarovitch, Jacques %T Corrigendum to our paper : How expressions can code for automata %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2010 %P 339-361 %V 44 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2010019/ %R 10.1051/ita/2010019 %G en %F ITA_2010__44_3_339_0
Lombardy, Sylvain; Sakarovitch, Jacques. Corrigendum to our paper : How expressions can code for automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 3, pp. 339-361. doi : 10.1051/ita/2010019. http://archive.numdam.org/articles/10.1051/ita/2010019/
[1] On the number of broken derived terms of a rational expression. J. Automata, Languages and Combinatorics, to appear.
, and ,[2] Partial derivatives of regular expressions and finite automaton constructions. Theoret. Computer Sci. 155 (1996) 291-319. | Zbl
,[3] Derivatives of regular expressions. J. Assoc. Comput. Mach. 11 (1964) 481-494. | Zbl
,[4] Glushkov construction for series: the non commutative case. Int. J. Comput. Math. 80 (2003) 457-472. | Zbl
and ,[5] Automata, Languages, and Machines. A, Academic Press (1974). | Zbl
,[6] The abstract theory of automata. Russ. Math. Surv. 16 (1961) 1-53. | Zbl
,[7] Derivatives of rational expressions with multiplicity. Theoret. Computer Sci. 332 (2005) 141-177. (Journal version of Proc. MFCS 02, LNCS 2420 (2002) 471-482.) | Zbl
and ,[8] How expressions can code for automata. RAIRO - Inform. theor. appl. 39 (2005) 217-237 (Journal version Proc. LATIN, LNCS 2976 (2004) 242-251.) | Numdam | Zbl
and ,[9] Éléments de théorie des automates. Vuibert (2003), Corrected English edition: Elements of Automata Theory . Cambridge University Press (2009). | Zbl
,Cité par Sources :