Minimizing a deterministic finite automata (DFA) is a very important problem in theory of automata and formal languages. Hopcroft's algorithm represents the fastest known solution to the such a problem. In this paper we analyze the behavior of this algorithm on a family binary automata, called tree-like automata, associated to binary labeled trees constructed by words. We prove that all the executions of the algorithm on tree-like automata associated to trees, constructed by standard words, have running time with the same asymptotic growth rate. In particular, we provide a lower and upper bound for the running time of the algorithm expressed in terms of combinatorial properties of the trees. We consider also tree-like automata associated to trees constructed by de Brujin words, and we prove that a queue implementation of the waiting set gives a Θ(n log n) execution while a stack implementation produces a linear execution. Such a result confirms the conjecture given in [A. Paun, M. Paun and A. Rodríguez-Patón. Theoret. Comput. Sci. 410 (2009) 2424-2430.] formulated for a family of unary automata and, in addition, gives a positive answer also for the binary case.
Mots clés : automata minimization, Hopcroft's algorithm, word trees
@article{ITA_2011__45_1_59_0, author = {Castiglione, G. and Restivo, A. and Sciortino, M.}, title = {Hopcroft's algorithm and tree-like automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {59--75}, publisher = {EDP-Sciences}, volume = {45}, number = {1}, year = {2011}, doi = {10.1051/ita/2011011}, mrnumber = {2776854}, zbl = {1220.68066}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2011011/} }
TY - JOUR AU - Castiglione, G. AU - Restivo, A. AU - Sciortino, M. TI - Hopcroft's algorithm and tree-like automata JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2011 SP - 59 EP - 75 VL - 45 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2011011/ DO - 10.1051/ita/2011011 LA - en ID - ITA_2011__45_1_59_0 ER -
%0 Journal Article %A Castiglione, G. %A Restivo, A. %A Sciortino, M. %T Hopcroft's algorithm and tree-like automata %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2011 %P 59-75 %V 45 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2011011/ %R 10.1051/ita/2011011 %G en %F ITA_2011__45_1_59_0
Castiglione, G.; Restivo, A.; Sciortino, M. Hopcroft's algorithm and tree-like automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 1, pp. 59-75. doi : 10.1051/ita/2011011. http://archive.numdam.org/articles/10.1051/ita/2011011/
[1] On the complexity of Hopcroft's state minimization algorithm, in CIAA. Lecture Notes in Computer Science 3317 (2004) 35-44. | Zbl
and ,[2] Continuant polynomials and worst-case behavior of Hopcrofts minimization algorithm. Theoret. Comput. Sci. 410 (2009) 2811-2822. | MR | Zbl
, and ,[3] Sturmian trees. Theor. Comput. Syst. 46 (2010) 443-478. | MR | Zbl
, , and ,[4] On Christoffel classes. RAIRO-Theor. Inf. Appl. 450 (2006) 15-28. | Numdam | MR | Zbl
and ,[5] Hopcroft's algorithm and cyclic automata, in LATA. Lecture Notes in Computer Science 5196 (2008) 172-183. | MR | Zbl
, and ,[6] On extremal cases of hopcroft's algorithm, in CIAA. Lecture Notes in Computer Science 5642 (2009) 14-23. | MR | Zbl
, and ,[7] On extremal cases of hopcroft's algorithm. Theoret. Comput. Sci. 411 (2010) 3414-3422 . | MR | Zbl
, and ,[8] An log algorithm for mimimizing the states in a finite automaton, in Theory of machines and computations (Proc. Internat. Sympos. Technion, Haifa, 1971). Academic Press, New York (1971), 189-196. | MR | Zbl
,[9] Re-describing an algorithm by Hopcroft. Theoret. Comput. Sci. 250 (2001) 333-363. | MR | Zbl
,[10] Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications 90. Cambridge University Press (2002). | MR | Zbl
,[11] Gedaken experiments on sequential, in Automata Studies. Annals of Mathematical Studies 34 (1956) 129-153. | MR
,[12] A linear time solution to the single function coarsest partition problem. Theoret. Comput. Sci. 40 (1985) 67-84 . | MR | Zbl
, and ,[13] Hopcroft's minimization technique: Queues or stacks? in CIAA. Lecture Notes in Computer Science 5148 (2008) 78-91. | Zbl
, and ,[14] On the hopcroft's minimization technique for dfa and dfca. Theoret. Comput. Sci. 410 (2009) 2424-2430. | MR | Zbl
, and ,[15] A taxonomy of finite automata minimization algorithms. Technical Report 93/44, Eindhoven University of Technology, Faculty of Mathematics and Computing Science (1994).
,Cité par Sources :