We show that it is decidable whether or not a given Q-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.
Mots clés : rational series, images of rational series, decidability
@article{ITA_2011__45_4_375_0, author = {Honkala, Juha}, title = {The cyclicity problem for the images of {Q-rational} series}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {375--381}, publisher = {EDP-Sciences}, volume = {45}, number = {4}, year = {2011}, doi = {10.1051/ita/2011111}, mrnumber = {2876112}, zbl = {1261.11027}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2011111/} }
TY - JOUR AU - Honkala, Juha TI - The cyclicity problem for the images of Q-rational series JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2011 SP - 375 EP - 381 VL - 45 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2011111/ DO - 10.1051/ita/2011111 LA - en ID - ITA_2011__45_4_375_0 ER -
%0 Journal Article %A Honkala, Juha %T The cyclicity problem for the images of Q-rational series %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2011 %P 375-381 %V 45 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2011111/ %R 10.1051/ita/2011111 %G en %F ITA_2011__45_4_375_0
Honkala, Juha. The cyclicity problem for the images of Q-rational series. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 4, pp. 375-381. doi : 10.1051/ita/2011111. http://archive.numdam.org/articles/10.1051/ita/2011111/
[1] Rational Series and Their Languages. Springer, Berlin (1988). | MR | Zbl
and ,[2] Noncommutative Rational Series with Applications. Cambridge University Press, Cambridge (2011). | MR | Zbl
and ,[3] La finitude des représentations linéaires des semi-groupes est décidable. J. Algebra 52 (1978) 437-459. | MR | Zbl
,[4] Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen. J. Reine Angew. Math. 151 (1921) 1-31. | JFM
,[5] Automata-Theoretic Aspects of Formal Power Series. Springer, Berlin (1978). | MR | Zbl
and ,[6] On the definition of a family of automata, Inf. Control 4 (1961) 245-270. | MR | Zbl
,Cité par Sources :