On abelian versions of critical factorization theorem
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 1, pp. 3-15.

In the paper we study abelian versions of the critical factorization theorem. We investigate both similarities and differences between the abelian powers and the usual powers. The results we obtained show that the constraints for abelian powers implying periodicity should be quite strong, but still natural analogies exist.

DOI : 10.1051/ita/2011121
Classification : 68R15
Mots clés : combinatorics on words, periodicity, central factorization theorem, abelian properties of words
@article{ITA_2012__46_1_3_0,
     author = {Avgustinovich, Sergey and Karhum\"aki, Juhani and Puzynina, Svetlana},
     title = {On abelian versions of critical factorization theorem},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {3--15},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {1},
     year = {2012},
     doi = {10.1051/ita/2011121},
     mrnumber = {2904957},
     zbl = {1247.68200},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ita/2011121/}
}
TY  - JOUR
AU  - Avgustinovich, Sergey
AU  - Karhumäki, Juhani
AU  - Puzynina, Svetlana
TI  - On abelian versions of critical factorization theorem
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2012
SP  - 3
EP  - 15
VL  - 46
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ita/2011121/
DO  - 10.1051/ita/2011121
LA  - en
ID  - ITA_2012__46_1_3_0
ER  - 
%0 Journal Article
%A Avgustinovich, Sergey
%A Karhumäki, Juhani
%A Puzynina, Svetlana
%T On abelian versions of critical factorization theorem
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2012
%P 3-15
%V 46
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ita/2011121/
%R 10.1051/ita/2011121
%G en
%F ITA_2012__46_1_3_0
Avgustinovich, Sergey; Karhumäki, Juhani; Puzynina, Svetlana. On abelian versions of critical factorization theorem. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 1, pp. 3-15. doi : 10.1051/ita/2011121. http://archive.numdam.org/articles/10.1051/ita/2011121/

[1] S.V. Avgustinovich and A.E. Frid, Words avoiding abelian inclusions. J. Autom. Lang. Comb. 7 (2002) 3-9. | MR | Zbl

[2] Y. Césari and M. Vincent, Une caractérisation des mots périodiques. C.R. Acad. Sci. Paris, Ser. A 286 (1978) 1175-1177. | Zbl

[3] J. Cassaigne and J. Karhumäki, Toeplitz words, generalized periodicity and periodically iterated morphisms. Eur. J. Comb. 18 (1997) 497-510. | MR | Zbl

[4] J. Cassaigne, G. Richomme, K. Saari and L.Q. Zamboni, Avoiding Abelian powers in binary words with bounded Abelian complexity. Int. J. Found. Comput. Sci. 22 (2011) 905-920. | MR | Zbl

[5] J.-P. Duval, Périodes et répetitions des mots du monoide libre. Theoret. Comput. Sci. 9 (1979) 17-26. | MR | Zbl

[6] J. Karhumäki, A. Lepistö and W. Plandowski, Locally periodic versus globally periodic infinite words. J. Comb. Th. (A) 100 (2002) 250-264. | MR | Zbl

[7] A. Lepistö, On Relations between Local and Global Periodicity. Ph.D. thesis (2002).

[8] M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (2002). | MR | Zbl

[9] F. Mignosi, A. Restivo and S. Salemi, Periodicity and the golden ratio. Theoret. Comput. Sci. 204 (1998) 153-167. | MR | Zbl

[10] G. Richomme, K. Saari and L. Zamboni, Abelian complexity of minimal subshifts. J. London Math. Soc. 83 (2011) 79-95. | MR | Zbl

[11] K. Saari, Everywhere α-repetitive sequences and Sturmian words. Eur. J. Comb. 31 (2010) 177-192. | MR | Zbl

[12] O. Toeplitz, Beispiele zur theorie der fastperiodischen Funktionen. Math. Ann. 98 (1928) 281-295. | JFM | MR

Cité par Sources :