The repetition threshold introduced by Dejean and Brandenburg is the smallest real number α such that there exists an infinite word over a k-letter alphabet that avoids β-powers for all β > α. We extend this notion to colored graphs and obtain the value of the repetition thresholds of trees and “large enough” subdivisions of graphs for every alphabet size.
Mots clés : combinatorics on words, repetition threshold, square-free coloring
@article{ITA_2012__46_1_123_0, author = {Ochem, Pascal and Vaslet, Elise}, title = {Repetition thresholds for subdivided graphs and trees}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {123--130}, publisher = {EDP-Sciences}, volume = {46}, number = {1}, year = {2012}, doi = {10.1051/ita/2011122}, mrnumber = {2904965}, zbl = {1247.68211}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2011122/} }
TY - JOUR AU - Ochem, Pascal AU - Vaslet, Elise TI - Repetition thresholds for subdivided graphs and trees JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2012 SP - 123 EP - 130 VL - 46 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2011122/ DO - 10.1051/ita/2011122 LA - en ID - ITA_2012__46_1_123_0 ER -
%0 Journal Article %A Ochem, Pascal %A Vaslet, Elise %T Repetition thresholds for subdivided graphs and trees %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2012 %P 123-130 %V 46 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2011122/ %R 10.1051/ita/2011122 %G en %F ITA_2012__46_1_123_0
Ochem, Pascal; Vaslet, Elise. Repetition thresholds for subdivided graphs and trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 1, pp. 123-130. doi : 10.1051/ita/2011122. http://archive.numdam.org/articles/10.1051/ita/2011122/
[1] There exist binary circular 5/2+ power free words of every length. Electron. J. Comb. 11 (2004) R10 | MR | Zbl
and ,[2] Dejean's conjecture and letter frequency. RAIRO-Theor. Inf. Appl. 42 (2008) 477-480. | Numdam | MR | Zbl
and ,[3] Sur un théorème de Thue. J. Combin. Theory. Ser. A 13 (1972) 90-99. | MR | Zbl
,[4] Nonrepetitive colorings of graphs - a survey. Int. J. Math. Math. Sci. (2007), doi:10.1155/2007/74639 | MR | Zbl
,[5] A generator of morphisms for infinite words. RAIRO-Theor. Inf. Appl. 40 (2006) 427-441. | Numdam | MR | Zbl
,[6] Non-repetitive 3-Coloring of subdivided graphs. Electron. J. Comb. 16 (2009) N15 | MR | Zbl
and ,Cité par Sources :