We investigate the Sandpile Model and Chip Firing Game and an extension of these models on cycle graphs. The extended model consists of allowing a negative number of chips at each vertex. We give the characterization of reachable configurations and of fixed points of each model. At the end, we give explicit formula for the number of their fixed points.
Mots clés : sandpile model, chip firing game, circular distribution, symmetric sandpile model, signed chip firing game, lattice structure
@article{ITA_2013__47_2_133_0, author = {Cori, Robert and Duong Phan, Thi Ha and Huong Tran, Thi Thu}, title = {Signed {Chip} {Firing} {Games} and symmetric {Sandpile} {Models} on the cycles}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {133--146}, publisher = {EDP-Sciences}, volume = {47}, number = {2}, year = {2013}, doi = {10.1051/ita/2012023}, mrnumber = {3072314}, zbl = {1266.05098}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2012023/} }
TY - JOUR AU - Cori, Robert AU - Duong Phan, Thi Ha AU - Huong Tran, Thi Thu TI - Signed Chip Firing Games and symmetric Sandpile Models on the cycles JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2013 SP - 133 EP - 146 VL - 47 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2012023/ DO - 10.1051/ita/2012023 LA - en ID - ITA_2013__47_2_133_0 ER -
%0 Journal Article %A Cori, Robert %A Duong Phan, Thi Ha %A Huong Tran, Thi Thu %T Signed Chip Firing Games and symmetric Sandpile Models on the cycles %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2013 %P 133-146 %V 47 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2012023/ %R 10.1051/ita/2012023 %G en %F ITA_2013__47_2_133_0
Cori, Robert; Duong Phan, Thi Ha; Huong Tran, Thi Thu. Signed Chip Firing Games and symmetric Sandpile Models on the cycles. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 47 (2013) no. 2, pp. 133-146. doi : 10.1051/ita/2012023. http://archive.numdam.org/articles/10.1051/ita/2012023/
[1] Self-organized criticality : An explanation of 1/f noise. Phys. Rev. Lett. 59 (1987) 381-284. | MR | Zbl
, and ,[2] Chip-firing games on graphs. Eur. J. Combin. 12 (1991) 283-291. | MR | Zbl
, and ,[3] On the sandpile group of dual graphs. Eur. J. Combin. 21 (2000) 447-459. | MR | Zbl
and ,[4] A simplified proof for the self-stabilizing protocol : A game of cards. Inf. Process. Lett. 54 (1995) 327-328. | Zbl
, , and ,[5] Algebraic aspects of abelian sandpile models. J. Phys. A 28 (1995) 805-831. | MR | Zbl
, , and ,[6] Advances in symmetric sandpiles. Fundam. Inf. 76 (2007) 91-112. | MR | Zbl
, and ,[7] Games on line graphes and sand piles. Theoret. Comput. Sci. 115 (1993) 321-349. | MR | Zbl
and ,[8] Lattice structure and convergence of a game of cards. Ann. Combin. 6 (2002) 327-335. | MR | Zbl
, and ,[9] Sandpiles and order structure of integer partitions. Discrete Appl. Math. 117 (2002) 51-64. | MR | Zbl
, and .[10] The structure of linear chip firing game and related models. Theoret. Comput. Sci. 270 (2002) 827-841. | MR | Zbl
, and ,[11] Clémence Magnien, Michel Morvan and Ha Duong Phan. Sandpile models and lattices : a comprehensive survey. Theoret. Comput. Sci. 322 (2004) 383-407. | MR | Zbl
and ,[12] Leader election in uniform rings. ACM Trans. Program. Lang. Syst. 15 (1993) 563-573.
.[13] Particle hole symmetry in a sandpile model, J. Stat. Mech. 2005 (2005) L01002.
and ,[14] The lattice structure of chip firing games. Physica D 115 (2001) 69-82. | MR | Zbl
and ,[15] Two sided sand piles model and unimodal sequences. RAIRO - Theor. Inf. Appl. 42 (2008) 631-646. | EuDML | Numdam | MR | Zbl
,Cité par Sources :