We prove the undecidability of Core XPath 1.0 (CXP) [G. Gottlob and C. Koch, in Proc. of 17th Ann. IEEE Symp. on Logic in Computer Science, LICS '02 (Copenhagen, July 2002). IEEE CS Press (2002) 189-202.] extended with an Inflationary Fixed Point (IFP) operator. More specifically, we prove that the satisfiability problem of this language is undecidable. In fact, the fragment of CXP+IFP containing only the self and descendant axes is already undecidable.
Mots clés : modal logic, fixed points, XML databases, XPath
@article{ITA_2013__47_1_3_0, author = {Afanasiev, Loredana and Cate, Balder Ten}, title = {On {Core} {XPath} with {Inflationary} {Fixed} {Points}}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {3--23}, publisher = {EDP-Sciences}, volume = {47}, number = {1}, year = {2013}, doi = {10.1051/ita/2012027}, mrnumber = {3072309}, zbl = {1270.68100}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2012027/} }
TY - JOUR AU - Afanasiev, Loredana AU - Cate, Balder Ten TI - On Core XPath with Inflationary Fixed Points JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2013 SP - 3 EP - 23 VL - 47 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2012027/ DO - 10.1051/ita/2012027 LA - en ID - ITA_2013__47_1_3_0 ER -
%0 Journal Article %A Afanasiev, Loredana %A Cate, Balder Ten %T On Core XPath with Inflationary Fixed Points %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2013 %P 3-23 %V 47 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2012027/ %R 10.1051/ita/2012027 %G en %F ITA_2013__47_1_3_0
Afanasiev, Loredana; Cate, Balder Ten. On Core XPath with Inflationary Fixed Points. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 47 (2013) no. 1, pp. 3-23. doi : 10.1051/ita/2012027. http://archive.numdam.org/articles/10.1051/ita/2012027/
[1] An inflationary fixed point operator in XQuery, in Proc. of 24th Int. Conf. on Data Engineering, ICDE '08 (Cancun, Apr. 2008). IEEE CS Press (2008) 1504-1506.
, , , and ,[2] Recursion in XQuery: Put your distributivity safety belt on, in Proc. of 12th Int. Conf. on Extending Database Technology, EDBT '09 (St. Petersburg, March 2009). ACM Press (2009) 345-356.
, , , and ,[3] Modal Logic, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press 53 (2002). | MR | Zbl
, and ,[4] MonetDB/XQuery: a fast XQuery processor powered by a relational engine, in Proc. of 25th ACM SIGMOD Int. Conf. on Management of Data, SIGMOD '06 (Chicago, IL, June 2006). ACM Press (2006) 479-490.
, , , , and ,[5] The Classical Decision Problem. Springer (1997). | MR | Zbl
, and ,[6] Modal μ-calculi, in Handbook of Modal Logic, edited by P. Blackburn, J. van Benthem and F. Wolter. Elsevier (2007) 721-756.
and ,[7] Inflationary fixed points in modal logic. ACM Trans. Comput. Log. 5 (2004) 282-315. | MR | Zbl
, and ,[8] Anatomy of a native XML base management system. VLDB J. 11 (2002) 292-314. | Zbl
, , , , , and ,[9] Georgetown Protein Information Resource, Protein sequence database (2001). Available on http://www.cs.washington.edu/research/xmldatasets/
[10] Monadic queries over tree-structured data, in Proc. of 17th Ann. IEEE Symp. on Logic in Computer Science, LICS '02 (Copenhagen, July 2002). IEEE CS Press (2002) 189-202.
and ,[11] Undecidability results on two-variable logics, in Proc. of 14th Ann. Symp. on Theoretical Aspects of Computer Science, STACS '97 (Lübeck, Feb./March 1997), Lect. Notes Comput. Sci. vol. 1200, edited by R. Reischuk and M. Morvan, Springer (1997) 249-260. | MR | Zbl
, and ,[12] Descriptive Complexity. Springer (1999). | MR | Zbl
,[13] TAX: A tree algebra for XML, in Revised Papers from 8th Int. Workshop on Database Programming Languages, DBPL 2001 (Frascati, Sept. 2001), Lect. Notes Comput. Sci. vol. 2397, edited by G. Ghelli and G. Grahne, Springer (2002) 149-164. | Zbl
, , and ,[14] On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic, in Proc. of 7th Int. Conf. on Concurrency Theory, CONCUR 1996 (Pisa, Aug. 1996), Lect. Notes Comput. Sci. vol. 1119, edited by U. Montanari and V. Sassone, Springer (1996) 263-277.
and ,[15] XPath with conditional axis relations, in Proc. of 9th Int. Conf. on Extending Database Technology, EDBT 2004 (Heraclion, March 2004), Lect. Notes Comput. Sci. vol. 2992, edited by E. Bertino et al., Springer (2004) 477-494.
,[16] Semantic characterizations of navigational XPath. ACM SIGMOD Record 34 (2005) 41-46.
and ,[17] B. ten Cate, Regular XPath: algebra, logic and automata, unpublished note presented at AUTOMATHA Workshop on Algebraic Theory of Automata and Logic (2006).
[18] Languages, automata, and logic, Handbook of Formal Languages, Beyond Words vol. 3, edited by G. Rozenberg and A. Salomaa, Springer (1997) 389-455.
,[19] XML path language (XPath) version 1.0, edited by J. Clark and S. DeRose. World Wide Web Consortium (1999). http://www.w3.org/TR/xpath/.
[20] XML path language (XPath) 2.0, edited by A. Berglund et al. World Wide Web Consortium (2007). Available on http://www.w3.org/TR/xpath20/.
[21] XQuery 1.0 : An XML query language, edited by S. Boag et al. World Wide Web Consortium (2007). Available on http://www.w3.org/TR/xquery/.
Cité par Sources :