Bidirectional string assembling systems
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) no. 1, pp. 39-59.

We introduce and investigate several variants of a bidirectional string assembling system, which is a computational model that generates strings from copies of assembly units. The underlying mechanism is based on two-sided piecewise assembly of a double-stranded sequence of symbols, where the upper and lower strand have to match. The generative capacities and the relative power of the variants are our main interest. In particular, we prove that bidirectional string assembling system generate languages not represented as any finite concatenation of one-sided string assembling systems. The latter build an infinite, strict and tight concatenation hierarchy. Moreover, it is shown that even the strongest system in question can only generate NL languages, while there are unary regular languages that cannot be derived. Furthermore, a finite strict hierarchy with respect to the different variants considered is shown and closure properties of the languages generated are presented.

DOI : 10.1051/ita/2013048
Classification : 68Q05, 68Q42
Mots-clés : string assembling, double-stranded sequences, concatenation hierarchy, stateless, multi-head finite automata, closure properties
@article{ITA_2014__48_1_39_0,
     author = {Kutrib, Martin and Wendlandt, Matthias},
     title = {Bidirectional string assembling systems},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {39--59},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {1},
     year = {2014},
     doi = {10.1051/ita/2013048},
     mrnumber = {3195788},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ita/2013048/}
}
TY  - JOUR
AU  - Kutrib, Martin
AU  - Wendlandt, Matthias
TI  - Bidirectional string assembling systems
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2014
SP  - 39
EP  - 59
VL  - 48
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ita/2013048/
DO  - 10.1051/ita/2013048
LA  - en
ID  - ITA_2014__48_1_39_0
ER  - 
%0 Journal Article
%A Kutrib, Martin
%A Wendlandt, Matthias
%T Bidirectional string assembling systems
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2014
%P 39-59
%V 48
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ita/2013048/
%R 10.1051/ita/2013048
%G en
%F ITA_2014__48_1_39_0
Kutrib, Martin; Wendlandt, Matthias. Bidirectional string assembling systems. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) no. 1, pp. 39-59. doi : 10.1051/ita/2013048. http://archive.numdam.org/articles/10.1051/ita/2013048/

[1] R. Freund, G. Păun, G. Rozenberg and A. Salomaa, Bidirectional sticker systems, in Pacific Symposium on Biocomputing (PSB 1998). World Scientific, Singapore (1998) 535-546.

[2] J. Hartmanis, On non-determinancy in simple computing devices. Acta Inform. 1 (1972) 336-344. | MR | Zbl

[3] L. Kari, G. Păun and G. Rozenberg, A. Salomaa and S. Yu, DNA computing, sticker systems, and universality. Acta Inform. 35 (1998) 401-420. | MR | Zbl

[4] M. Kutrib and M. Wendlandt, Bidirectional string assembling systems, in vol. 290 of Non-Classical Models of Automata and Applications (NCMA 2011). books@ocg.at. Austrian Computer Society, Vienna (2012) 107-121.

[5] M. Kutrib and M. Wendlandt, String assembling systems. RAIRO: ITA 46 (2012) 593-613. | Numdam | MR | Zbl

[6] R. Mcnaughton, Algebraic decision procedures for local testability. Math. Systems Theory 8 (1974) 60-76. | MR | Zbl

[7] G. Păun and G. Rozenberg, Sticker systems. Theoret. Comput. Sci. 204 (1998) 183-203. | MR | Zbl

[8] E.L. Post, A variant of a recursively unsolvable problem. Bull. AMS 52 (1946) 264-268. | MR | Zbl

[9] A.C. Yao and R.L. Rivest, k + 1 heads are better than k. J. ACM 25 (1978) 337-340. | MR | Zbl

[10] Y. Zalcstein, Locally testable languages. J. Comput. System Sci. 6 (1972) 151-167. | MR | Zbl

Cité par Sources :