Algorithm design and theoretical analysis of a novel CMM modular exponentiation algorithm for large integers
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 49 (2015) no. 3, pp. 255-268.

Modular exponentiation is an important operation in public-key cryptography. The Common-Multiplicand-Multiplication (CMM) modular exponentiation is an efficient exponentiation algorithm. This paper presents a novel method for speeding up the CMM modular exponentiation algorithm based on a Modified Montgomery Modular Multiplication (M4) algorithm. The M4 algorithm uses a new multi bit scan-multi bit shift technique by employing a modified encoding algorithm. In the M4 algorithm, three operations (the zero chain multiplication, the required additions and the nonzero digit multiplication) are relaxed to a multi bit shift and one binary addition in only one clock cycle. Our computational complexity analysis shows that the average number of required multiplication steps (clock cycles) is considerably reduced in comparison with other CMM modular exponentiation algorithms.

Reçu le :
Accepté le :
DOI : 10.1051/ita/2015007
Classification : 68P25, 94A60, 14G50, 11Yxx, 11Y16, 11Rxx
Mots-clés : Modular multiplication, canonical recoding, modular exponentiation, public-key cryptosystem, high speed arithmetic
Rezai, Abdalhossein 1 ; Keshavarzi, Parviz 2

1 Academic Center for Education, Culture and Research (ACECR), Isfahan University of Technology (IUT) branch, Isfahan, Iran
2 Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
@article{ITA_2015__49_3_255_0,
     author = {Rezai, Abdalhossein and Keshavarzi, Parviz},
     title = {Algorithm design and theoretical analysis of a novel {CMM} modular exponentiation algorithm for large integers},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {255--268},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {3},
     year = {2015},
     doi = {10.1051/ita/2015007},
     mrnumber = {3434601},
     zbl = {1404.68211},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ita/2015007/}
}
TY  - JOUR
AU  - Rezai, Abdalhossein
AU  - Keshavarzi, Parviz
TI  - Algorithm design and theoretical analysis of a novel CMM modular exponentiation algorithm for large integers
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2015
SP  - 255
EP  - 268
VL  - 49
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ita/2015007/
DO  - 10.1051/ita/2015007
LA  - en
ID  - ITA_2015__49_3_255_0
ER  - 
%0 Journal Article
%A Rezai, Abdalhossein
%A Keshavarzi, Parviz
%T Algorithm design and theoretical analysis of a novel CMM modular exponentiation algorithm for large integers
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2015
%P 255-268
%V 49
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ita/2015007/
%R 10.1051/ita/2015007
%G en
%F ITA_2015__49_3_255_0
Rezai, Abdalhossein; Keshavarzi, Parviz. Algorithm design and theoretical analysis of a novel CMM modular exponentiation algorithm for large integers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 49 (2015) no. 3, pp. 255-268. doi : 10.1051/ita/2015007. http://archive.numdam.org/articles/10.1051/ita/2015007/

S. Arno and F.S. Wheeler, Signed digit representations of minimal Hamming weight. IEEE Trans. Comput. 42 (1993) 1007–1010. | DOI

T. Blum and C. Paar, High-radix Montgomery multiplication on reconfigurable hardware. IEEE Trans. Comput. 50 (2001) 759–764. | DOI

A. Booth, A signed binary multiplication technique. J. Mech. Appl. Math. 4 (1951) 236–240. | DOI | MR | Zbl

S.R. Dusse and B.S Kaliski, A cryptographic library for the Motorola DSP 56000. Proc. of Adv. Cryptol. EUROCRYPT’90. In vol. 73 of Lect. Notes Comput. Sci. (1990) 230–244. | Zbl

O. Egecioglu and C.K. Koc, Exponentiation using Canonical Recoding. Theoret. Comput. Sci. 129 (1994) 407–417. | DOI | MR

Y. Fan, T. Ikenaga and S. Goto, A high-speed design of Montgomery multiplier. IEICE Trans. Fundam. Electron., Commun. Computers E91-A (2008) 971–977.

A.P. Fournaris and O. Koufopavlou, A new RSA encryption architecture and hardware implementation based on optimized Montgomery multiplication. In Proc. of IEEE ISCAS (2005) 4645–4648.

J.C. Ha and S.J. Moon, A common-multiplicand method to the Montgomery algorithm for speeding up exponentiation. Inf. Process. Lett. 66 (1998) 105–107. | DOI | MR | Zbl

A. Ibrahim, H. Elsimary and F. Gebali, Low-power, high-speed unified and scalable word-based radix-8 architecture for Montgomery modular multiplication. Arab J. Sci. Eng. 39 (2014) 7847–7863. | DOI

P. Keshavarzi and C. Harrison, A New Modular Multiplication Algorithm for VLSI Implementation of Public-Key Cryptography. In Proc. of 1st Int. Symp. Commun. Syst. Digit. signal Process. CSDSP98, Sheffield, UK (1998) 516–519.

D.C. Lee and C.L. Wu, Parallel exponentiation using common-multiplicand-multiplication and signed-digit-folding techniques. Int. J. Comput. Math. 81 (2004) 1187–1202. | DOI | MR | Zbl

P.L. Montgomery, Modular multiplication without trial division. Math. Comput. 44 (1985) 519–521. | DOI | MR | Zbl

N. Nedjah and L.M. Mourelle, High-performance hardware of the sliding-window method for parallel computation of modular exponentiations. Int. J. Parallel program. 37 (2009) 537–555. | DOI | Zbl

N. Nedjah and L.M. Mourelle, A hardware/software co-design versus hardware-only implementation of modular exponentiation using the sliding-window method. J. Circuits Syst. Comput. 18 (2009) 295–310. | DOI

J.C. Neto, A.F. Tenca and W.V. Ruggiero, A parallel and uniformly k-partition method for Montgomery multiplication. IEEE Trans. Comput. 63 (2014) 2122–2133. | DOI | MR | Zbl

A. Rezai and P. Keshavarzi, High-Performance Implementation Approach of Elliptic Curve Cryptosystem for Wireless Network Applications. In Proc. of IEEE. Int. Conf. Consum. Electron. Commun. Netw. (CECNet 2011). Xianning, China (2011) 1323–1327.

A. Rezai and P. Keshavarzi, High-performance modular exponentiation algorithm by using a new modified modular multiplication algorithm and common-multiplicand-multiplication method. In Proc. of IEEE. World Congr. Internet Secur. London, UK (2011) 192–197.

A. Rezai and P. Keshavarzi, CCS Representation: A new non-adjacent form and its application in ECC. J. Basic. Appl. Sci. Res. 2 (2012) 4577–4586.

A. Rezai and P. Keshavarzi, A new finite field multiplication algorithm to improve elliptic curve cryptosystem implementations. J. Inf. Syst. Telecom. 1 (2013) 119–129.

A. Rezai and P. Keshavarzi, High-throughput modular multiplication and exponentiation algorithms using multibit-scan-multibit-shift technique. IEEE Trans. Very Large Scale Integr. Syst. 23 (2015) 1710–1719. | DOI

G.W. Reitwiesner, Binary arithmetic. Adv. Comput. 1 (1960) 231–308. | DOI | MR

G.D. Sutter, J.P. Deschamps and J.L. Imana, Modular multiplication and exponentiation architectures for fast RSA cryptosystem based on digit serial computation. IEEE Trans. Indust. Electron. 58 (2011) 3101–3109. | DOI

I. San and N. At, Improving the computational efficiency of modular operations for embedded systems. J. Syst. Arch. 60 (2014) 440–451. | DOI

M. Tunstall and M. Joye, The distributions of individual bits in the output of multiplicative operations. Crypto. Commun. 7 (2015) 71–90. | DOI | MR | Zbl

L.A. Tawalbeh, A.F. Tenca and C.K. Koc, A radix-4 scalable design. IEEE Potentials. 24 (2005) 16–18. | DOI

A.F. Tenca and L. Tawalbeh, An Efficient and Scalable Radix-4 Modular Multiplier Design using Recoding Techniques. In Proc. of IEEE. Asilomar Conf. signals, syst., comput., Monterey, CA (2003) 1445–1450.

N. Pinckney and D. Harris, Parallelized radix-4 scalable Montgomery multipliers. J. Integr. Sysyt. 3 (2008) 39–45.

C.D. Walter, Systolic modular multiplication. IEEE Trans. Comput. 42 (1993) 376–378. | DOI

T. Wu, S. Li and L. Liu, Fast, compact and symmetric modular exponentiation architecture by common-multiplicand Montgomery modular multiplication. Integr. VLSI J. 36 (2013) 323–332. | DOI

C.L. Wu, D.C. Lou and T.J. Chang, An Efficient Montgomery Exponentiation Algorithm for Public-key Cryptosystem. In Proc. of IEEE. Int. Conf. Intell. Security Inform., Taipei, Taiwan (2008) 284–285.

C.L. Wu, An efficient common-multiplicand-multiplication method to the Montgomery algorithm for speeding up exponentiation. Inform. Sci. 179 (2009) 410-421. | DOI | MR | Zbl

C.L. Wu, D.C. Lou and T.J. Chang, Fast modular multiplication based on complement representation and canonical recoding. Int. J. comput. Math. 87 (2010) 2871–2879. | DOI | MR | Zbl

J.J. Xie, J. He and P.K. Meher, Low latency systolic Montgomery multiplier for finite field GF(2 m ) based on pentanomials. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21 (2013) 385–389. | DOI

M. Yoshino, K. Okeya and C. Vuillaume, Bipartite modular multiplication with twice the bit-length of multipliers. Int. J. Inform. Security 8 (2009) 13–23. | DOI

Cité par Sources :