This paper continues the study initiated by Alex Heinis of the set of pairs obtained as the lower and upper limit of the ratio of complexity and length for an infinite word. Heinis proved that this set contains no point under a certain curve. We extend this result by proving that there are only three points on this curve, namely , (3/2, 5/3) and , and moreover the point (3/2, 5/3) is an isolated point in the set . For this, we use Rauzy graphs, generalizing techniques of Ali Aberkane.
Accepté le :
DOI : 10.1051/ita/2016004
Mots-clés : Rauzy graph, Sturmian words, complexity function
@article{ITA_2016__50_1_21_0, author = {Turki, Ramzi}, title = {An isolated point in the {Heinis} spectrum}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {21--38}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/ita/2016004}, mrnumber = {3518157}, zbl = {1354.68218}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2016004/} }
TY - JOUR AU - Turki, Ramzi TI - An isolated point in the Heinis spectrum JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 21 EP - 38 VL - 50 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2016004/ DO - 10.1051/ita/2016004 LA - en ID - ITA_2016__50_1_21_0 ER -
%0 Journal Article %A Turki, Ramzi %T An isolated point in the Heinis spectrum %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 21-38 %V 50 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2016004/ %R 10.1051/ita/2016004 %G en %F ITA_2016__50_1_21_0
Turki, Ramzi. An isolated point in the Heinis spectrum. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Special issue dedicated to the 15th "Journées Montoises d'Informatique Théorique", Tome 50 (2016) no. 1, pp. 21-38. doi : 10.1051/ita/2016004. http://archive.numdam.org/articles/10.1051/ita/2016004/
Exemples de suites de complexité inférieure à 2. Bull. Belg. Math. Soc. 8 (2001) 161–180. | MR | Zbl
,A. Aberkane, Utilisation des graphes de Rauzy dans la caractérisation de certaines familles de suites de faible complexité, Ph. D. thesis. Université d’Aix-Marseille 2 (2002).
Représentation géometrique des suites de complexité 2+1. Bull. Soc. Math. France 119 (1991) 199–215. | DOI | Numdam | MR | Zbl
and ,V. Berthé and M. Rigo, Combinatorics, Automata, and Number Theory. Cambridge University Press, Cambridge (2010). | MR | Zbl
Complexité et facteurs speciaux. Bull. Belg. Math. Soc. 4 (1997) 67–88. | MR | Zbl
,Local symmetries in the period doubling sequence. Discrete Appl. Math. 100 (2000) 115–121. | DOI | MR | Zbl
,A. Heinis, Arithmetics and combinatorics of words of low complexity. Ph. D. thesis, University of Leiden (2001). | Zbl
The -function for bi-infinite words. Theoret. Comput. Sci. 273 (2002) 35–46. | DOI | MR | Zbl
,An -adic characterization of minimal subshifts with first difference of complexity . Discrete Math. Theor. Comput. Sci. 16 (2014) 233–286. | MR | Zbl
,M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002). | Zbl
Symbolic dynamics. Amer. J. Math. 60 (1938) 815–866. | DOI | JFM | MR
, ,Sequences with subword complexity . J. Number Theory 46 (1994) 196–213. | DOI | MR | Zbl
,Cité par Sources :