Under some hypotheses, if the image by a morphism of a -power-free word contains a -power, we can reduce this word to obtain a new word with the same scheme. These hypotheses are satisfied in the case of uniform morphisms. This allows us to state that, when , a -power-free uniform morphism is a -power-free morphism.
Accepté le :
DOI : 10.1051/ita/2016006
Mots clés : Word, morphism, uniform and k-power
@article{ITA_2016__50_1_3_0, author = {Wlazinski, Francis}, title = {Reduction in non-($k + 1$)-power-free morphisms}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {3--20}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/ita/2016006}, mrnumber = {3518156}, zbl = {1362.68243}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2016006/} }
TY - JOUR AU - Wlazinski, Francis TI - Reduction in non-($k + 1$)-power-free morphisms JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 3 EP - 20 VL - 50 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2016006/ DO - 10.1051/ita/2016006 LA - en ID - ITA_2016__50_1_3_0 ER -
%0 Journal Article %A Wlazinski, Francis %T Reduction in non-($k + 1$)-power-free morphisms %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 3-20 %V 50 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2016006/ %R 10.1051/ita/2016006 %G en %F ITA_2016__50_1_3_0
Wlazinski, Francis. Reduction in non-($k + 1$)-power-free morphisms. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 50 (2016) no. 1, pp. 3-20. doi : 10.1051/ita/2016006. http://archive.numdam.org/articles/10.1051/ita/2016006/
Mots sans carré et morphismes itérés. Discrete Appl. Math. 29 (1980) 235–244. | MR | Zbl
,J. Berstel, Axel Thue’s papers on repetition in words: a translation. Technical Report 20, Laboratoire de Combinatoire et d’Informatique Mathématique, Université du Québec, Montréal (1995).
A characterization of overlap-free morphisms. Discrete Appl. Math. 46 (1993) 275–281. | DOI | MR | Zbl
and ,Uniformly growing th power-free homomorphisms. Theoret. Comput. Sci. 23(1) (1983) 69–82. | DOI | MR | Zbl
,Sharp characterizations of squarefree morphisms. Theoret. Comput. Sci. 18 (1982) 221–226. | DOI | MR | Zbl
,M. Crochemore, Régularités évitables (thèse d’état). Technical Report 83-43, LITP (1983).
There are k-uniform cubefree binary morphisms for all . Discrete Appl. Math. 157 (2009) 2548–2551. | DOI | MR | Zbl
and ,Sur un théorème de Thue. J. Comb. Theory 13 (1972) 90–99. series A. | DOI | MR | Zbl
,J. Karhumäki, On strongly cube-free -words generated by binary morphisms. In Proc. FCT’81. Vol. 117 of Lect. Notes Comput. Sci. Springer, Berlin (1981) 182–189. | MR | Zbl
On cube-free -words generated by binary morphisms. Discrete Appl. Math. 5 (1983) 279–297. | DOI | MR | Zbl
,On -repetition freeness of length uniform morphisms over a binary alphabet. Discrete Appl. Math. 9 (1984) 301–305. | DOI | MR | Zbl
,V. Keränen, On the -freeness of morphisms on free monoids. Annales Academiae Scientarium Fennicae. Vol. 61, Series A (1986). | MR | Zbl
A characterization of power-free morphisms. Theoret. Comput. Sci. 38 (1985) 117–122. | DOI | MR | Zbl
,M. Leconte, Codes sans répétition. Ph.D. thesis, LITP Université Paris 6 (1985).
M. Lothaire, Combinatorics on Words. Vol. 17 of Encyclopedia of Mathematics. Addison-Wesley (1983). Reprinted in 1997 by Cambridge University Press in the Cambridge Mathematical Library, Cambridge, UK (1997). | MR
M. Lothaire, Algebraic Combinatorics on Words. Vol. 90 of Encyclopedia of Mathematics. Cambridge University Press, Cambridge, UK (2002). | Zbl
Non-repetitive sequences. Mat. Proc. Camb. Phil. Soc. 68 (1970) 267–274. | DOI | MR | Zbl
,Characterization of test-sets for overlap-free morphisms. Discrete Appl. Math. 98 (1999) 151–157. | DOI | MR | Zbl
, and ,Conjectures and results on morphisms generating -power-free words. Int. J. Found. Comput. Sci. 15 (2004) 307–316. | DOI | MR | Zbl
and ,G. Richomme and F. Wlazinski, About cube-free morphisms. In STACS’2000, edited by H. Reichel and S. Tison. Vol. 1770 of Lect. Notes Comput. Sci. Springer-Verlag (2000) 99–109. | MR | Zbl
Uber unendliche zeichenreihen. Kristiania Videnskapsselskapets Skrifter Klasse I. Mat.-naturv 7 (1906) 1–22. | JFM
,Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen. Kristiania Videnskapsselskapets Skrifter Klasse I. Mat.-naturv 1 (1912) 1–67. | JFM
,A test-set for -power-free binary morphisms. RAIRO: ITA 35 (2001) 437–452. | Numdam | Zbl
,Cité par Sources :