We consider tilings of a board by and squares and get combinatorical results on proportions of small squares for in plain case and for in cylindrical case.
Accepté le :
DOI : 10.1051/ita/2016011
Mots clés : Tiling, square tiles, generating functions, automaton, strip tilings, tiling graph
@article{ITA_2016__50_1_105_0, author = {Rolin, Nicolas and Ugolnikova, Alexandra}, title = {Tilings by $1 \times{} 1$ and $2 \times{} 2$}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {105--116}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/ita/2016011}, zbl = {1346.05028}, mrnumber = {3518163}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2016011/} }
TY - JOUR AU - Rolin, Nicolas AU - Ugolnikova, Alexandra TI - Tilings by $1 \times{} 1$ and $2 \times{} 2$ JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 105 EP - 116 VL - 50 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2016011/ DO - 10.1051/ita/2016011 LA - en ID - ITA_2016__50_1_105_0 ER -
%0 Journal Article %A Rolin, Nicolas %A Ugolnikova, Alexandra %T Tilings by $1 \times{} 1$ and $2 \times{} 2$ %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 105-116 %V 50 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2016011/ %R 10.1051/ita/2016011 %G en %F ITA_2016__50_1_105_0
Rolin, Nicolas; Ugolnikova, Alexandra. Tilings by $1 \times{} 1$ and $2 \times{} 2$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 50 (2016) no. 1, pp. 105-116. doi : 10.1051/ita/2016011. http://archive.numdam.org/articles/10.1051/ita/2016011/
Counting kings: as easy as Congr. Numer. 183 (2006) 83–95. | MR | Zbl
, , , , and ,P. Flajolet and R. Sedgewick, Analytical Combinatorics. Cambridge University Press (2009). | MR | Zbl
Tiling an m-by-n Area with Squares of Size up to k-by-k with m 5. Congr. Numerantium 140 (1999) 43–64. | MR | Zbl
,Patterns Arising From Tiling Rectangles with and Squares. Congr. Numerantium 150 (2001) 173–192. | MR | Zbl
and ,M.-L. Lackner and M. Wallner, An invitation to analytic combinatorics and lattice path counting. Lecture note of the 2015 ALEA in Europe Young Researchers’ Workshop (2015).
R.J. Mathar, Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices. Preprint (2014). | arXiv
N.J.A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences. Academic Press, San Diego (1995). | MR | Zbl
Cité par Sources :