Tilings by 1×1 and 2×2
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 50 (2016) no. 1, pp. 105-116.

We consider tilings of a k×n board by 1×1 and 2×2 squares and get combinatorical results on proportions of small squares for k10 in plain case and for k8 in cylindrical case.

Reçu le :
Accepté le :
DOI : 10.1051/ita/2016011
Classification : 35L05, 35L70
Mots clés : Tiling, square tiles, generating functions, automaton, strip tilings, tiling graph
Rolin, Nicolas 1 ; Ugolnikova, Alexandra 1

1 LIPN, Paris 13, France
@article{ITA_2016__50_1_105_0,
     author = {Rolin, Nicolas and Ugolnikova, Alexandra},
     title = {Tilings by $1 \times{}            1$ and $2 \times{}          2$},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {105--116},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {1},
     year = {2016},
     doi = {10.1051/ita/2016011},
     zbl = {1346.05028},
     mrnumber = {3518163},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ita/2016011/}
}
TY  - JOUR
AU  - Rolin, Nicolas
AU  - Ugolnikova, Alexandra
TI  - Tilings by $1 \times{}            1$ and $2 \times{}          2$
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2016
SP  - 105
EP  - 116
VL  - 50
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ita/2016011/
DO  - 10.1051/ita/2016011
LA  - en
ID  - ITA_2016__50_1_105_0
ER  - 
%0 Journal Article
%A Rolin, Nicolas
%A Ugolnikova, Alexandra
%T Tilings by $1 \times{}            1$ and $2 \times{}          2$
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2016
%P 105-116
%V 50
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ita/2016011/
%R 10.1051/ita/2016011
%G en
%F ITA_2016__50_1_105_0
Rolin, Nicolas; Ugolnikova, Alexandra. Tilings by $1 \times{}            1$ and $2 \times{}          2$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 50 (2016) no. 1, pp. 105-116. doi : 10.1051/ita/2016011. http://archive.numdam.org/articles/10.1051/ita/2016011/

N.J. Calkin, K. James, Sh. Purvis, Sh. Race, K. Schneider and M. Yancey, Counting kings: as easy as λ 1 ,λ 2 ,λ 3 ... Congr. Numer. 183 (2006) 83–95. | MR | Zbl

P. Flajolet and R. Sedgewick, Analytical Combinatorics. Cambridge University Press (2009). | MR | Zbl

S. Heubach, Tiling an m-by-n Area with Squares of Size up to k-by-k with m 5. Congr. Numerantium 140 (1999) 43–64. | MR | Zbl

S. Heubach and P. Chinn, Patterns Arising From Tiling Rectangles with 1×1 and 2×2 Squares. Congr. Numerantium 150 (2001) 173–192. | MR | Zbl

M.-L. Lackner and M. Wallner, An invitation to analytic combinatorics and lattice path counting. Lecture note of the 2015 ALEA in Europe Young Researchers’ Workshop (2015).

R.J. Mathar, Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices. Preprint (2014). | arXiv

N.J.A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences. Academic Press, San Diego (1995). | MR | Zbl

Cité par Sources :