Given a family of subsets �� over a set of elements and two integers and , max -set cover consists of finding a subfamily �� ⊆ �� of cardinality at most , covering at least elements of . This problem is W[2]-hard when parameterized by , and FPT when parameterized by . We investigate the parameterized approximability of the problem with respect to parameters and . Then, we show that max sat-, a satisfiability problem generalizing max -set cover, is also FPT with respect to parameter .
Accepté le :
DOI : 10.1051/ita/2016022
Mots clés : Parameterized complexity, parameterized approximation, max k-set cover
@article{ITA_2016__50_3_227_0, author = {Bonnet, \'Edouard and Paschos, Vangelis Th. and Sikora, Florian}, title = {Parameterized exact and approximation algorithms for maximum $k$-set cover and related satisfiability problems}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {227--240}, publisher = {EDP-Sciences}, volume = {50}, number = {3}, year = {2016}, doi = {10.1051/ita/2016022}, mrnumber = {3582639}, zbl = {1400.68081}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2016022/} }
TY - JOUR AU - Bonnet, Édouard AU - Paschos, Vangelis Th. AU - Sikora, Florian TI - Parameterized exact and approximation algorithms for maximum $k$-set cover and related satisfiability problems JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 227 EP - 240 VL - 50 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2016022/ DO - 10.1051/ita/2016022 LA - en ID - ITA_2016__50_3_227_0 ER -
%0 Journal Article %A Bonnet, Édouard %A Paschos, Vangelis Th. %A Sikora, Florian %T Parameterized exact and approximation algorithms for maximum $k$-set cover and related satisfiability problems %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 227-240 %V 50 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2016022/ %R 10.1051/ita/2016022 %G en %F ITA_2016__50_3_227_0
Bonnet, Édouard; Paschos, Vangelis Th.; Sikora, Florian. Parameterized exact and approximation algorithms for maximum $k$-set cover and related satisfiability problems. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 50 (2016) no. 3, pp. 227-240. doi : 10.1051/ita/2016022. http://archive.numdam.org/articles/10.1051/ita/2016022/
A.A. Ageev and M. Sviridenko, Approximation algorithms for maximum coverage and max cut with given sizes of parts. In Proc. of Conference on Integer Programming and Combinatorial Optimization, IPCO’99, edited by G. Cornuéjols, R.E. Burkard and G.J. Woeginger. Vol. 1610 of Lecture Notes in Computer Science. Springer-Verlag (1999) 17–30. | MR | Zbl
A. Badanidiyuru, R. Kleinberg and H. Lee, Approximating low-dimensional coverage problems. In Proc. of Symposuim on Computational Geometry, SoCG’12, Chapel Hill, NC, edited by T.K. Dey and S. Whitesides. ACM (2012) 161–170. | MR | Zbl
Set partitioning via inclusion-exclusion. SIAM J. Comput. 39 (2009) 546–563. | DOI | MR | Zbl
, and ,Computing small partial coverings. Inform. Process. Lett. 85 (2003) 327–331. | DOI | MR | Zbl
,Multi-parameter complexity analysis for constrained size graph problems: using greediness for parameterization. Algorithmica 71 (2015) 566–580. | DOI | MR | Zbl
, , and ,E. Bonnet, V.Th. Paschos and F. Sikora, Multiparameterizations for max -set cover and related satisfiability problems. Preprint (2013). | arXiv
Parameter complexity of cardinality constrained optimization problems. Comput. J. 51 (2008) 102–121. | DOI
,L. Cai and X. Huang, Fixed-parameter approximation: conceptual framework and approximability results. In Proc. of International Workshop on Parameterized and Exact Computation, IWPEC’06, edited by H.L. Bodlaender and M.A. Langston. Vol. 4169 of Lect. Notes Comput. Sci. Springer-Verlag (2006) 96–108. | MR | Zbl
The turing way to parameterized complexity. J. Comput. System Sci. 67 (2003) 654–685. | DOI | MR | Zbl
,J. Chen, D.K. Friesen, W. Jia and I.A. Kanj, Using nondeterminism to design deterministic algorithms. In Proc. of Foundations of Software Technology and Theoretical Computer Science, FSTTCS’01, edited by R. Hariharan, M. Mukund and V. Vinay. Vol. 2245 of Lect. Notes Comput. Sci. Springer-Verlag (2001) 120–131. | MR | Zbl
Y. Chen, M. Grohe and M. Grüber, On parameterized approximability. In Proc. of the International Workshop on Parameterized and Exact Computation, IWPEC’06, edited by H.L. Bodlaender and M.A. Langston. Vol. 4169 of Lect. Notes Comput. Sci. Springer-Verlag (2006) 109–120. | MR | Zbl
Y. Chen and B. Lin, The constant inapproximability of the parameterized dominating set problem. Preprint (2015). | arXiv | MR
Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Management Sci. 23 (1977) 789–810. | DOI | MR | Zbl
, and ,Efficient algorithms for the max -vertex cover problem. J. Comb. Optim. 28 (2014) 674–691. | DOI | MR | Zbl
and ,F. Dehne, M.R. Fellows, F.A. Rosamond and P. Shaw, Greedy localization, iterative compression, modeled crown reductions: new FPT techniques, an improved algorithm for set splitting, and a novel kernelization for vertex cover. In Proc. of the International Workshop on Parameterized and Exact Computation, IWPEC’04, edited by R.G. Downey, M.R. Fellows and F. Dehne. Vol. 3162 of Lect. Notes Comput. Sci. Springer-Verlag (2004) 271–280. | Zbl
R.G. Downey and M.R. Fellows, Parameterized complexity. Monographs in Computer Science. Springer, New York (1999). | MR
R.G. Downey, M.R. Fellows and C. McCartin, Parameterized approximation problems. In Proc. of the International Workshop on Parameterized and Exact Computation, IWPEC’06, edited by H.L. Bodlaender and M.A. Langston. Vol. 4169 of Lect. Notes Comput. Sci. Springer-Verlag (2006) 121–129. | MR | Zbl
Parameterized approximation of dominating set problems. Inform. Process. Lett. 109 (2008) 68–70. | DOI | MR | Zbl
, , and ,A threshold of for approximating set cover. J. Assoc. Comput. Mach. 45 (1998) 634–652. | DOI | MR | Zbl
,W-hierarchies defined by symmetric gates. Theory Comput. Sys. 46 (2010) 311–339. | DOI | MR | Zbl
, , , and ,M.R. Garey and D.S. Johnson, Computers and intractability. A guide to the theory of NP-completeness, edited by W. H. Freeman, San Francisco (1979). | MR | Zbl
Parameterized complexity of vertex cover variants. Theory Comput. Syst. 41 (2007) 501–520. | DOI | MR | Zbl
, and ,Y. Liu, S. Lu, J. Chen and S.-H. Sze, Greedy localization and color-coding: improved matching and packing algorithms. In Proc. of the International Workshop on Parameterized and Exact Computation, IWPEC’06, edited by H.L. Bodlaender and M.A. Langston. Vol. 4169 of Lecture Notes in Computer Science. Springer-Verlag (2006) 84–95. | MR | Zbl
Parameterized complexity and approximation algorithms. Comput. J. 51 (2008) 60–78. | DOI
,D. Moshkovitz, The projection games conjecture and the NP-hardness of -approximating set-cover. In Proc. of Workshop on Approximation Algorithms for Combinatorial Optimization Problems and Workshop on Randomization and Computation, APPROX-RANDOM’12, edited by A. Gupta, K. Jansen, J.D.P. Rolim and R.A. Servedio. Vol. 7408 of Lecture Notes in Computer Science. Springer-Verlag (2012) 276–287. | MR
R. Niedermeier, Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2006). | MR | Zbl
C.H. Papadimitriou, Computational complexity. Addison-Wesley (1994). | MR | Zbl
C.H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity. Prentice Hall, New Jersey (1981). | MR | Zbl
P. Skowron and P. Faliszewski, In Fully proportional representation with approval ballots: approximating the maxcover problem with bounded frequencies in FPT time. AAAI Conference on Artificial Intelligence (2015). | MR
Cité par Sources :