We prove that the automaton presented by Maslov [Soviet Math. Doklady 11 (1970) 1373–1375] meets the upper bound on the state complexity of Kleene closure. Our main result shows that the upper bounds on the state complexity of Kleene closure of a language accepted by an -state DFA with final states are tight for every with in the binary case. We also study Kleene Closure on prefix-free languages. In the case of prefix-free languages, the Kleene closure may attain just three possible complexities and . We give some survey of our computations.
Accepté le :
DOI : 10.1051/ita/2016024
Mots clés : Regular languages, finite automata, Kleene closure, state complexity
@article{ITA_2016__50_3_251_0, author = {Palmovsk\'y, Mat\'u\v{s}}, title = {Kleene closure and state complexity}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {251--261}, publisher = {EDP-Sciences}, volume = {50}, number = {3}, year = {2016}, doi = {10.1051/ita/2016024}, mrnumber = {3582641}, zbl = {1357.68107}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2016024/} }
TY - JOUR AU - Palmovský, Matúš TI - Kleene closure and state complexity JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 251 EP - 261 VL - 50 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2016024/ DO - 10.1051/ita/2016024 LA - en ID - ITA_2016__50_3_251_0 ER -
%0 Journal Article %A Palmovský, Matúš %T Kleene closure and state complexity %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 251-261 %V 50 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2016024/ %R 10.1051/ita/2016024 %G en %F ITA_2016__50_3_251_0
Palmovský, Matúš. Kleene closure and state complexity. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 50 (2016) no. 3, pp. 251-261. doi : 10.1051/ita/2016024. http://archive.numdam.org/articles/10.1051/ita/2016024/
In search of most complex regular languages. Internat. J. Found. Comput. Sci. 24 (2013) 691–708. | DOI | MR | Zbl
,On equations for regular languages, finite automata, and sequential networks. Theoret. Comput. Sci. 10 (1980) 19–35. | DOI | MR | Zbl
, ,K. Čevorová, Kleene star on unary regular languages. DCFS 2013, edited by H. Jürgensen, R. Reis. In vol. 8031 of Lect. Notes Comput. Sci. Springer (2013) 277–288. | MR
State complexity of union and intersection of star on k regular languages. Theoret. Comput. Sci. 429 (2012) 98–107. | DOI | MR | Zbl
, , ,Y. Gao, N. Moreira, R. Reis, S. Yu, A review on state complexity of individual operations. Technical report, Technical Report Series DCC-2011-08, Version 1.1 Universidade do Porto. Available at www.dcc.fc.up.pt/Pubs (2016).
Magic numbers in the state hierarchy of finite automata. Inform. Comput. 205 (2007) 1652–1670. | DOI | MR | Zbl
,J. Hopcroft, An algorithm for minimizing states in A finite automata. Technical Report STAN-CS-71-190. Computer Science Dept. (1971).
Y.S. Han, K. Salomaa, D. Wood, Operational state complexity of prefix-free regular languages. Automata, Formal Languages, and Related Topics. Institute of Informatics, University of Szeged (2009) 99–115. | MR | Zbl
Tight bounds on the number of states of DFAs that are equivalent to -state NFAs. Theoret. Comput. Sci. 237 (2000) 485–494. Preliminary version in: 3rd International Conference on Developments in Language Theory, edited by S. Bozapalidis. Aristotle University of Thessaloniki (1997). | DOI | MR | Zbl
, , ,The Ranges of state complexities for complement, star, and reversal of regular languages. Internat. J. Found. Comput. Sci. 25 (2014) 101–124. Preliminary version: On the state complexity of complements, stars, and reversals of regular languages. DLT 2008, edited by M. Ito, M. Toyama. In vol. 5257 of Lect. Notes Comput. Sci. Springer (2008) 431–442. | DOI | Zbl
,Magic numbers and ternary alphabet. Int. J. Found. Comput. Sci. 22 (2011) 331–344. | DOI | MR | Zbl
,G. Jirásková, M. Palmovský, J.S. Šebej, Kleene Closure on Regular and Prefix-Free Languages. CIAA 2014, edited by M. Holzer, M. Kutrib. In vol. 8587 of Lect. Notes Comput. Sci. Springer (2014) 226–237. | MR | Zbl
Estimates of the number of states of finite automata. Soviet Math. Doklady 11 (1970) 1373–1375. | MR | Zbl
,M. Sipser, Introduction to the theory of computation. PWS Publishing Company, Boston (1997). | Zbl
Finite automata and their decision problems. IBM Res. Develop. 3 (1959) 114–129. | DOI | MR | Zbl
, ,J. Šebej, Reversal of regular language and state complexity. Master’s thesis. P.J. Šafárik University in Košice, Slovakia (2012).
S. Yu, Regular languages, Chapter 2. In vol. I of Handbook of Formal Languages, edited by G. Rozenberg, A. Salomaa. Springer, Heidelberg (1997) 41–110. | MR | Zbl
The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125 (1994) 315–328. | DOI | MR | Zbl
, , ,Cité par Sources :