We prove that the automaton presented by Maslov [Soviet Math. Doklady 11 (1970) 1373–1375] meets the upper bound
Accepté le :
DOI : 10.1051/ita/2016024
Mots-clés : Regular languages, finite automata, Kleene closure, state complexity
@article{ITA_2016__50_3_251_0, author = {Palmovsk\'y, Mat\'u\v{s}}, title = {Kleene closure and state complexity}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {251--261}, publisher = {EDP-Sciences}, volume = {50}, number = {3}, year = {2016}, doi = {10.1051/ita/2016024}, mrnumber = {3582641}, zbl = {1357.68107}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita/2016024/} }
TY - JOUR AU - Palmovský, Matúš TI - Kleene closure and state complexity JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 251 EP - 261 VL - 50 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita/2016024/ DO - 10.1051/ita/2016024 LA - en ID - ITA_2016__50_3_251_0 ER -
%0 Journal Article %A Palmovský, Matúš %T Kleene closure and state complexity %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 251-261 %V 50 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita/2016024/ %R 10.1051/ita/2016024 %G en %F ITA_2016__50_3_251_0
Palmovský, Matúš. Kleene closure and state complexity. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 50 (2016) no. 3, pp. 251-261. doi : 10.1051/ita/2016024. https://www.numdam.org/articles/10.1051/ita/2016024/
In search of most complex regular languages. Internat. J. Found. Comput. Sci. 24 (2013) 691–708. | DOI | MR | Zbl
,On equations for regular languages, finite automata, and sequential networks. Theoret. Comput. Sci. 10 (1980) 19–35. | DOI | MR | Zbl
, ,K. Čevorová, Kleene star on unary regular languages. DCFS 2013, edited by H. Jürgensen, R. Reis. In vol. 8031 of Lect. Notes Comput. Sci. Springer (2013) 277–288. | MR
State complexity of union and intersection of star on k regular languages. Theoret. Comput. Sci. 429 (2012) 98–107. | DOI | MR | Zbl
, , ,Y. Gao, N. Moreira, R. Reis, S. Yu, A review on state complexity of individual operations. Technical report, Technical Report Series DCC-2011-08, Version 1.1 Universidade do Porto. Available at www.dcc.fc.up.pt/Pubs (2016).
Magic numbers in the state hierarchy of finite automata. Inform. Comput. 205 (2007) 1652–1670. | DOI | MR | Zbl
,
J. Hopcroft, An
Y.S. Han, K. Salomaa, D. Wood, Operational state complexity of prefix-free regular languages. Automata, Formal Languages, and Related Topics. Institute of Informatics, University of Szeged (2009) 99–115. | MR | Zbl
Tight bounds on the number of states of DFAs that are equivalent to
The Ranges of state complexities for complement, star, and reversal of regular languages. Internat. J. Found. Comput. Sci. 25 (2014) 101–124. Preliminary version: On the state complexity of complements, stars, and reversals of regular languages. DLT 2008, edited by M. Ito, M. Toyama. In vol. 5257 of Lect. Notes Comput. Sci. Springer (2008) 431–442. | DOI | Zbl
,Magic numbers and ternary alphabet. Int. J. Found. Comput. Sci. 22 (2011) 331–344. | DOI | MR | Zbl
,G. Jirásková, M. Palmovský, J.S. Šebej, Kleene Closure on Regular and Prefix-Free Languages. CIAA 2014, edited by M. Holzer, M. Kutrib. In vol. 8587 of Lect. Notes Comput. Sci. Springer (2014) 226–237. | MR | Zbl
Estimates of the number of states of finite automata. Soviet Math. Doklady 11 (1970) 1373–1375. | MR | Zbl
,M. Sipser, Introduction to the theory of computation. PWS Publishing Company, Boston (1997). | Zbl
Finite automata and their decision problems. IBM Res. Develop. 3 (1959) 114–129. | DOI | MR | Zbl
, ,J. Šebej, Reversal of regular language and state complexity. Master’s thesis. P.J. Šafárik University in Košice, Slovakia (2012).
S. Yu, Regular languages, Chapter 2. In vol. I of Handbook of Formal Languages, edited by G. Rozenberg, A. Salomaa. Springer, Heidelberg (1997) 41–110. | MR | Zbl
The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125 (1994) 315–328. | DOI | MR | Zbl
, , ,- Polynomial-Complexity Deadlock Avoidance Policy for Tasks Offloading in Satellite Edge Computing With Data-Dependent Constraints and Limited Buffers, IEEE Transactions on Aerospace and Electronic Systems, Volume 60 (2024) no. 5, p. 6822 | DOI:10.1109/taes.2024.3409269
- Operations on Boolean and Alternating Finite Automata, Electronic Proceedings in Theoretical Computer Science, Volume 386 (2023), p. 3 | DOI:10.4204/eptcs.386.1
- Operations on Permutation Automata, Developments in Language Theory, Volume 12086 (2020), p. 122 | DOI:10.1007/978-3-030-48516-0_10
- Kuratowski Algebras Generated by Prefix-, Suffix-, Factor-, and Subword-Free Languages Under Star and Complementation, International Journal of Foundations of Computer Science, Volume 30 (2019) no. 06n07, p. 1091 | DOI:10.1142/s0129054119400306
- Operations on Boolean and Alternating Finite Automata, Computer Science – Theory and Applications, Volume 10846 (2018), p. 181 | DOI:10.1007/978-3-319-90530-3_16
Cité par 5 documents. Sources : Crossref