Analysis of digital search trees incorporated with paging
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 51 (2017) no. 1, pp. 7-15.

Ordinary digital search trees (DSTs) stores one word in each of its internal nodes and leaves, but a DST with paging size b allows storing b words in the leaves, which corresponds to pages in auxiliary storage. In this paper, we analyse the average number of nodes, the average node-wise path length and 2-protected nodes in DSTs with paging size b. We utilize recurrence relations, analytical Poissonization and de-Poissonization, the Mellin transform, and complex analysis. We also compare the storage usage in paged DSTs to that in DSTs. For example, for b=2,3,4,5,6, the approximate average number of nodes in paged DSTs is, respectively, 82%, 67%, 55%, 47%, 41% of the size of DSTs (when b=1). Thus the results are nontrivial and interesting for computer scientists.

Reçu le :
Accepté le :
DOI : 10.1051/ita/2017002
Classification : 05C05, 60C05
Mots-clés : Random trees, paged digital search trees, singularity analysis
Javanian, Mehri 1 ; Vahidi-asl, Mohammad Q. 2

1 Department of Statistics, University of Zanjan, Zanjan, Iran.
2 Department of Statistics, Shahid Beheshti University, Tehran, Iran.
@article{ITA_2017__51_1_7_0,
     author = {Javanian, Mehri and Vahidi-asl, Mohammad Q.},
     title = {Analysis of digital search trees incorporated with paging},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {7--15},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {1},
     year = {2017},
     doi = {10.1051/ita/2017002},
     mrnumber = {3678026},
     zbl = {1369.05033},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ita/2017002/}
}
TY  - JOUR
AU  - Javanian, Mehri
AU  - Vahidi-asl, Mohammad Q.
TI  - Analysis of digital search trees incorporated with paging
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2017
SP  - 7
EP  - 15
VL  - 51
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ita/2017002/
DO  - 10.1051/ita/2017002
LA  - en
ID  - ITA_2017__51_1_7_0
ER  - 
%0 Journal Article
%A Javanian, Mehri
%A Vahidi-asl, Mohammad Q.
%T Analysis of digital search trees incorporated with paging
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2017
%P 7-15
%V 51
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ita/2017002/
%R 10.1051/ita/2017002
%G en
%F ITA_2017__51_1_7_0
Javanian, Mehri; Vahidi-asl, Mohammad Q. Analysis of digital search trees incorporated with paging. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 51 (2017) no. 1, pp. 7-15. doi : 10.1051/ita/2017002. http://archive.numdam.org/articles/10.1051/ita/2017002/

R.R.X. Du and H. Prodinger, Notes on Protected Nodes in Digital Search Trees. Appl. Math. Lett. 25 (2012) 1025–1028. | DOI | MR | Zbl

P. Flajolet, X. Gourdon and P. Dumas, Mellin Transforms and Asymptotics: Harmonic Sums. Theor. Comput. Sci. 144 (1995) 3–58. | DOI | MR | Zbl

P. Flajolet, X. Gourdon and C. Martinez, Patterns in Random Binary Search Trees. Random Struct. Algorithms. 11 (1997) 223–244. | DOI | MR | Zbl

P. Flajolet and B. Richmond, Generalized Digital Trees and Their Difference-Differential Equations. Random Struct. Algorithms 3 (1992) 305–320. | DOI | MR | Zbl

M. Fuchs, C.K. Lee and G.R. Yu, On 2-Protected Nodes in Random Digital Trees. Theor. Comput. Sci. 622 (2016) 111–122. | DOI | MR | Zbl

M. Hoshi and P. Flajolet, Page Usage in a Quadtree Index. BIT 32 (1992) 384–402. | DOI | MR | Zbl

H.K. Hwang, M. Fuchs and V. Zacharovas, Asymptotic Variance of Random Symmetric Digital Search Trees. Discrete Math. Theor. Comput. Sci. 12 (2010) 103–166. | MR | Zbl

P. Jacquet and W. Szpankowski, Analytical De-Poissonization and Its Applications. Theor. Comput. Sci. 201 (1998) 1–62. | DOI | MR | Zbl

D.E. Knuth, The Art of Computer Programming in: Sorting and Searching. Addison Wesley (1998). | MR | Zbl

C. Martinez, A. Panholzer and H. Prodinger, On the Number of Descendants and Ascendants in Random Search Trees. Electron. J. Combin. 5 (1998) #R20. | DOI | MR | Zbl

J.S. Vitter and P. Flajolet, Average-case analysis of algorithms and data structures. Handb. Theor. Comput. Sci. (1990). | MR | Zbl

Cité par Sources :