We introduce a definition of admissibility for subintervals in interval exchange transformations. We characterize the admissible intervals using a branching version of the Rauzy induction. Using this notion, we prove a property of the natural codings of interval exchange transformations, namely that any derived set of a regular interval exchange set is a regular interval exchange set with the same number of intervals. Derivation is taken here with respect to return words. We also study the case of regular interval exchange transformations defined over a quadratic field and show that the set of factors of such a transformation is primitive morphic. The proof uses an extension of a result of Boshernitzan and Carroll.
Accepté le :
Mots clés : Interval exchange, Rauzy induction, return words, derived sets
@article{ITA_2017__51_3_135_0, author = {Dolce, Francesco and Perrin, Dominique}, title = {Interval exchanges, admissibility and branching {Rauzy} induction}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {135--139}, publisher = {EDP-Sciences}, volume = {51}, number = {3}, year = {2017}, doi = {10.1051/ita/2017004}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2017004/} }
TY - JOUR AU - Dolce, Francesco AU - Perrin, Dominique TI - Interval exchanges, admissibility and branching Rauzy induction JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2017 SP - 135 EP - 139 VL - 51 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2017004/ DO - 10.1051/ita/2017004 LA - en ID - ITA_2017__51_3_135_0 ER -
%0 Journal Article %A Dolce, Francesco %A Perrin, Dominique %T Interval exchanges, admissibility and branching Rauzy induction %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2017 %P 135-139 %V 51 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2017004/ %R 10.1051/ita/2017004 %G en %F ITA_2017__51_3_135_0
Dolce, Francesco; Perrin, Dominique. Interval exchanges, admissibility and branching Rauzy induction. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 51 (2017) no. 3, pp. 135-139. doi : 10.1051/ita/2017004. http://archive.numdam.org/articles/10.1051/ita/2017004/
Small denominators and problems of stability of motion in classical and celestial mechanics. Uspehi Mat. Nauk 18 (1963) 91–192. | MR | Zbl
,Characterization of substitution invariant words coding exchange of three intervals. Integers 8 (2008) A20, 21. | MR | Zbl
, and ,Sequences with constant number of return words. Monatsh. Math. 155 (2008) 251–263. | DOI | MR | Zbl
, and ,Bifix codes and Sturmian words. J. Algebra 369 (2012) 146–202. | DOI | MR | Zbl
, , , and ,V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer and G. Rindone, Acyclic, connected and tree sets. Monatsh. Math (2015). | MR
Maximal bifix decoding. Discrete Math. 338 (2015) 725–742. | DOI | MR | Zbl
, , , , , and ,V. Berthé and M. Rigo, Combinatorics, automata and number theory. Vol. 135 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2010). | MR | Zbl
Dominique Perrin, Christophe Reutenauer and Giuseppina Rindone. Bifix codes and interval exchanges. J. Pure Appl. Algebra 219 (2015) 2781–2798. | MR | Zbl
, , and ,Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials. Ergodic Theory Dynam. Syst. 29 (2009) 767–816. | DOI | MR | Zbl
and ,Rank two interval exchange transformations. Ergodic Theory Dynam. Syst. 8 (1988) 379–394. | DOI | MR | Zbl
,An extension of Lagrange’s theorem to interval exchange transformations over quadratic fields. J. Anal. Math. 72 (1997) 21–44. | DOI | MR | Zbl
and ,I.P. Cornfeld, S.V. Fomin and Ya.G. Sinaĭ, Ergodic theory. Vol. 245 of Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences. Translated from the Russian by A.B. Sosinskiĭ. Springer Verlag, New York (1982). | MR | Zbl
Measured foliations on nonorientable surfaces. Ann. Sci. École Norm. Sup. 23 (1990) 469–494. | DOI | Numdam | MR | Zbl
and ,A characterization of substitutive sequences using return words. Discrete Math. 179 (1998) 89–101. | DOI | MR | Zbl
,Languages of -interval exchange transformations. Bull. Lond. Math. Soc. 40 (2008) 705–714. | DOI | MR | Zbl
and ,N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. Vol. 1794 of Lect. Notes Math. Springer-Verlag, Berlin (2002). | MR | Zbl
An algorithm to identify automorphisms which arise from self-induced interval exchange transformations. Math. Z. 274 (2013) 33–55. | DOI | MR | Zbl
,Return words in Sturmian and episturmian words. Theoret. Inform. Appl. 34 (2000) 343–356. | DOI | Numdam | MR | Zbl
and ,Interval exchange transformations. Math. Z. 141 (1975) 25–31. | DOI | MR | Zbl
,P. Køurka, Topological and symbolic dynamics. Vol. 11 of Cours Spécialisés, Specialized Courses. Société Mathématique de France, Paris (2003). | MR | Zbl
M. Lothaire, Algebraic combinatorics on words. Vol. 90 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2002). | Zbl
Exactness of the Euclidean algorithm and of the Rauzy induction on the space of interval exchange transformations. Ergodic Theory Dynam. Syst. 33 (2013) 221–246. | DOI | MR | Zbl
and ,The spectrum of ergodic automorphisms. Dokl. Akad. Nauk SSSR 168 (1966) 1009–1011. | MR | Zbl
,Échanges d’intervalles et transformations induites. Acta Arith. 34 (1979) 315–328. | DOI | MR | Zbl
,Symmetric interval identification systems of order three. Discrete Contin. Dyn. Syst. 32 (2012) 643–656. | DOI | MR | Zbl
,Ergodic theory of interval exchange maps. Rev. Mat. Complut. 19 (2006) 7–100. | DOI | MR | Zbl
,On the number of return words in infinite words constructed by interval exchange transformations. Pure Math. Appl. (PU.M.A.) 18 (2007) 345–355. | MR | Zbl
,J.-C. Yoccoz, Interval exchange maps and translation surfaces. In Homogeneous flows, moduli spaces and arithmetic. Vol. 10 of Clay Math. Proc. Amer. Math. Soc., Providence, RI (2010) 1–69. | MR | Zbl
Cité par Sources :