While a characterization of unavoidable formulas (without reversal) is well-known, little is known about the avoidability of formulas with reversal in general. In this article, we characterize the unavoidable formulas with reversal that have at most two one-way variables (x is a one-way variable in formula with reversal ϕ if exactly one of x and xR appears in ϕ).
DOI : 10.1051/ita/2017013
Mots clés : Pattern avoidance, formula with reversal, unavoidability
@article{ITA_2017__51_4_181_0, author = {Currie, James D. and Mol, Lucas and Rampersad, Narad}, editor = {Leroy, J. and Rigo, M. and Charlier, E.}, title = {On avoidability of formulas with reversal}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {181--189}, publisher = {EDP-Sciences}, volume = {51}, number = {4}, year = {2017}, doi = {10.1051/ita/2017013}, mrnumber = {3782819}, zbl = {1390.68512}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2017013/} }
TY - JOUR AU - Currie, James D. AU - Mol, Lucas AU - Rampersad, Narad ED - Leroy, J. ED - Rigo, M. ED - Charlier, E. TI - On avoidability of formulas with reversal JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2017 SP - 181 EP - 189 VL - 51 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2017013/ DO - 10.1051/ita/2017013 LA - en ID - ITA_2017__51_4_181_0 ER -
%0 Journal Article %A Currie, James D. %A Mol, Lucas %A Rampersad, Narad %E Leroy, J. %E Rigo, M. %E Charlier, E. %T On avoidability of formulas with reversal %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2017 %P 181-189 %V 51 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2017013/ %R 10.1051/ita/2017013 %G en %F ITA_2017__51_4_181_0
Currie, James D.; Mol, Lucas; Rampersad, Narad. On avoidability of formulas with reversal. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 51 (2017) no. 4, pp. 181-189. doi : 10.1051/ita/2017013. http://archive.numdam.org/articles/10.1051/ita/2017013/
[1] Avoidable patterns in strings of symbols. Pac. J. Math. 85 (1979) 261–294. | DOI | MR | Zbl
, and ,[2] Motifs évitables et régularité dans les mots, Ph.D. Thesis. Université Paris VI (1994).
,[3] Avoidable Formulas in Combinatorics on Words, Ph.D. Thesis. University of California, Los Angeles (2001). | MR
,[4] Avoidability index for binary patterns with reversal. Electron. J. Combin. 23 (2016) 1–36. | DOI | MR | Zbl
and ,[5] A proof of Dejean’s conjecture. Math. Comp. 80 (2011) 1063–1070. | DOI | MR | Zbl
and ,[6] A family of formulas with reversahigl of h avoidability index. Int. J. Algebra Comput. 27 (2017) 477. | DOI | MR | Zbl
, and ,[7] Algebraic Combinatorics on Words. Cambridge University Press (2002). | DOI | Zbl
,[8] Last cases of Dejean’s conjecture. Theoret. Comput. Sci. 412 (2011) 3010–3018. | DOI | MR | Zbl
,[9] Blocking sets of terms (English translation). Math. USSR Sbornik 47 (1984) 353–364. | DOI | MR | Zbl
,Cité par Sources :