We prove various results about the largest exponent of a repetition in a factor of the Thue–Morse word, when that factor is considered as a circular word. Our results confirm and generalize previous results of Fitzpatrick and Aberkane & Currie.
Accepté le :
DOI : 10.1051/ita/2018008
Mots-clés : Thue–Morse sequence, critical exponent, finite automaton, circular word, critical exponents
@article{ITA_2019__53_1-2_37_0, author = {Shallit, Jeffrey and Zarifi, Ramin}, title = {Circular critical exponents for {Thue{\textendash}Morse} factors}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {37--49}, publisher = {EDP-Sciences}, volume = {53}, number = {1-2}, year = {2019}, doi = {10.1051/ita/2018008}, mrnumber = {3920828}, zbl = {1445.68185}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2018008/} }
TY - JOUR AU - Shallit, Jeffrey AU - Zarifi, Ramin TI - Circular critical exponents for Thue–Morse factors JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2019 SP - 37 EP - 49 VL - 53 IS - 1-2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2018008/ DO - 10.1051/ita/2018008 LA - en ID - ITA_2019__53_1-2_37_0 ER -
%0 Journal Article %A Shallit, Jeffrey %A Zarifi, Ramin %T Circular critical exponents for Thue–Morse factors %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2019 %P 37-49 %V 53 %N 1-2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2018008/ %R 10.1051/ita/2018008 %G en %F ITA_2019__53_1-2_37_0
Shallit, Jeffrey; Zarifi, Ramin. Circular critical exponents for Thue–Morse factors. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 53 (2019) no. 1-2, pp. 37-49. doi : 10.1051/ita/2018008. http://archive.numdam.org/articles/10.1051/ita/2018008/
[1] There exist binary circular 5∕2+ power free words of every length. Electron. J. Comb. 11 (2004) #R10 | DOI | MR | Zbl
and ,[2] The Thue-Morse word contains circular 5∕2+ power free words of every length. Theor. Comput. Sci. 332 (2005) 573–581 | DOI | MR | Zbl
and ,[3] The ubiquitous Prouhet-Thue-Morse sequence, in Sequences and Their Applications, Proceedings of SETA ’98, edited by , and . Springer-Verlag London (1999) 1–16 | MR | Zbl
and ,[4] Axel Thue’s work on repetitions in words, in Séries Formelles et Combinatoire Algébrique, edited by and . Vol. 11 of Publications du LaCim. Université du Québec à Montréal (1992) 65–80
,[5] M. Mendès France and A.J. van der Poorten, Folds! Math. Intell. 4 (1982) 130–138. (Erratum, 5 (1983) 5.) | MR | Zbl
,[6] There are binary circular cube-free words of length n contained within the Thue-Morse word for all positive integers n. Ars Combinatoria 74 (2005) 323–329 | MR | Zbl
,[7] Dimension des courbes planes, papiers pliés et suites de Rudin-Shapiro. Bull. Soc. Math. France 109 (1981) 207–215 | DOI | Numdam | MR | Zbl
and ,[8] Automatic theorem proving in Walnut. Preprint . Code available at https://github.com/hamousavi/Walnut, 2016 2018 | arXiv
,[9] Repetition avoidance in circular factors, in DLT 2013 – Developments in Language Theory, edited by and Vol. 7907 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg 2013 384–395 | DOI | MR | Zbl
and ,[10] Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67. (Reprinted in Selected Mathematical Papers of Axel Thue, edited by . Universitetsforlaget, Oslo (1977) 413–478.) | JFM | MR
,Cité par Sources :