The complexity of concatenation on deterministic and alternating finite automata
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 52 (2018) no. 2-3-4, pp. 153-168.

We study the state complexity of the concatenation operation on regular languages represented by deterministic and alternating finite automata. For deterministic automata, we show that the upper bound m2n-k2n-1 on the state complexity of concatenation can be met by ternary languages, the first of which is accepted by an m-state DFA with k final states, and the second one by an n-state DFA with final states for arbitrary integers m,n,k, with 1km1 and 1n1. In the case of km2, we are able to provide appropriate binary witnesses. In the case of k=m1 and 2, we provide a lower bound which is smaller than the upper bound just by one. We use our binary witnesses for concatenation on deterministic automata to describe binary languages meeting the upper bound 2m+n+1 for the concatenation on alternating finite automata. This solves an open problem stated by Fellah 𝑒𝑡𝑎𝑙. [𝐼𝑛𝑡.𝐽.𝐶𝑜𝑚𝑝𝑢𝑡.𝑀𝑎𝑡ℎ. 35 (1990) 117–132].

DOI : 10.1051/ita/2018011
Classification : 68Q19, 68Q45
Mots-clés : Regular languages, finite automata, concatenation, state complexity
Hospodár, Michal 1 ; Jirásková, Galina 1

1
@article{ITA_2018__52_2-3-4_153_0,
     author = {Hospod\'ar, Michal and Jir\'askov\'a, Galina},
     title = {The complexity of concatenation on deterministic and alternating finite automata},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {153--168},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2-3-4},
     year = {2018},
     doi = {10.1051/ita/2018011},
     mrnumber = {3915306},
     zbl = {1486.68096},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ita/2018011/}
}
TY  - JOUR
AU  - Hospodár, Michal
AU  - Jirásková, Galina
TI  - The complexity of concatenation on deterministic and alternating finite automata
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2018
SP  - 153
EP  - 168
VL  - 52
IS  - 2-3-4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ita/2018011/
DO  - 10.1051/ita/2018011
LA  - en
ID  - ITA_2018__52_2-3-4_153_0
ER  - 
%0 Journal Article
%A Hospodár, Michal
%A Jirásková, Galina
%T The complexity of concatenation on deterministic and alternating finite automata
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2018
%P 153-168
%V 52
%N 2-3-4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ita/2018011/
%R 10.1051/ita/2018011
%G en
%F ITA_2018__52_2-3-4_153_0
Hospodár, Michal; Jirásková, Galina. The complexity of concatenation on deterministic and alternating finite automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 52 (2018) no. 2-3-4, pp. 153-168. doi : 10.1051/ita/2018011. https://www.numdam.org/articles/10.1051/ita/2018011/

[1] J. Brzozowski and E. Leiss, On equations for regular languages, finite automata, and sequential networks. Theoret. Comput. Sci. 10 (1980) 19–35 | DOI | MR | Zbl

[2] E. Dorčák, Concatenation of regular languages and state complexity, ŠVK thesis. P. J. Šafárik University, Košice (2015)

[3] A. Fellah, H. Jürgensen, and S. Yu, Constructions for alternating finite automata. Int. J. Comput. Math. 35 (1990) 117–132 | DOI | Zbl

[4] J.E. Hopcroft, and J.D. Ullman, Introduction to Automata Theory, Languages and Computation. Addison-Wesley (1979) | MR | Zbl

[5] J. Jirásek, G. Jirásková, and A. Szabari, State complexity of concatenation and complementation. Int. J. Found. Comput. Sci. 16 (2005) 511–529 | DOI | MR | Zbl

[6] G. Jirásková, State complexity of some operations on binary regular languages. Theoret. Comput. Sci. 330 (2005) 287–298 | DOI | MR | Zbl

[7] G. Jirásková, Descriptional complexity of operations on alternating and boolean automata. In CSR 2012, edited by E. Hirsch et al. Vol. 7353 of Lect. Notes Comput Sci. Springer (2012) 196–204 | MR | Zbl

[8] E. Leiss, Succinct representation of regular languages by boolean automata. Theoret. Comput. Sci. 13 (1981) 323–330 | DOI | MR | Zbl

[9] E. Leiss, On generalized language equations. Theoret. Comput. Sci. 14 (1981) 63–77 | DOI | MR | Zbl

[10] A.N. Maslov, Estimates of the number of states of finite automata. Soviet Math. Doklady 11 (1970) 1373–1375 | MR | Zbl

[11] M. Rabin and D. Scott, Finite automata and their decision problems. IBM Res. Develop. 3 (1959) 114–129 | DOI | MR | Zbl

[12] M. Sipser, Introduction to the theory of computation. Cengage Learning, Boston (2012)

[13] S. Yu, Regular languages, Chapter 2. In vol. I of Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa. Springer Heidelberg (1997) 41–110 | DOI | MR | Zbl

[14] S. Yu, Q. Zhuang, and K. Salomaa, The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125 (1994) 315–328 | DOI | MR | Zbl

Cité par Sources :