We study the state complexity of the concatenation operation on regular languages represented by deterministic and alternating finite automata. For deterministic automata, we show that the upper bound
Mots-clés : Regular languages, finite automata, concatenation, state complexity
@article{ITA_2018__52_2-3-4_153_0, author = {Hospod\'ar, Michal and Jir\'askov\'a, Galina}, title = {The complexity of concatenation on deterministic and alternating finite automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {153--168}, publisher = {EDP-Sciences}, volume = {52}, number = {2-3-4}, year = {2018}, doi = {10.1051/ita/2018011}, mrnumber = {3915306}, zbl = {1486.68096}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita/2018011/} }
TY - JOUR AU - Hospodár, Michal AU - Jirásková, Galina TI - The complexity of concatenation on deterministic and alternating finite automata JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2018 SP - 153 EP - 168 VL - 52 IS - 2-3-4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita/2018011/ DO - 10.1051/ita/2018011 LA - en ID - ITA_2018__52_2-3-4_153_0 ER -
%0 Journal Article %A Hospodár, Michal %A Jirásková, Galina %T The complexity of concatenation on deterministic and alternating finite automata %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2018 %P 153-168 %V 52 %N 2-3-4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita/2018011/ %R 10.1051/ita/2018011 %G en %F ITA_2018__52_2-3-4_153_0
Hospodár, Michal; Jirásková, Galina. The complexity of concatenation on deterministic and alternating finite automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 52 (2018) no. 2-3-4, pp. 153-168. doi : 10.1051/ita/2018011. https://www.numdam.org/articles/10.1051/ita/2018011/
[1] On equations for regular languages, finite automata, and sequential networks. Theoret. Comput. Sci. 10 (1980) 19–35 | DOI | MR | Zbl
and ,[2] Concatenation of regular languages and state complexity, ŠVK thesis. P. J. Šafárik University, Košice (2015)
,[3] Constructions for alternating finite automata. Int. J. Comput. Math. 35 (1990) 117–132 | DOI | Zbl
, , and ,[4] Introduction to Automata Theory, Languages and Computation. Addison-Wesley (1979) | MR | Zbl
, and ,[5] State complexity of concatenation and complementation. Int. J. Found. Comput. Sci. 16 (2005) 511–529 | DOI | MR | Zbl
, , and ,[6] State complexity of some operations on binary regular languages. Theoret. Comput. Sci. 330 (2005) 287–298 | DOI | MR | Zbl
,[7] Descriptional complexity of operations on alternating and boolean automata. In CSR 2012, edited by et al. Vol. 7353 of Lect. Notes Comput Sci. Springer (2012) 196–204 | MR | Zbl
,[8] Succinct representation of regular languages by boolean automata. Theoret. Comput. Sci. 13 (1981) 323–330 | DOI | MR | Zbl
,[9] On generalized language equations. Theoret. Comput. Sci. 14 (1981) 63–77 | DOI | MR | Zbl
,[10] Estimates of the number of states of finite automata. Soviet Math. Doklady 11 (1970) 1373–1375 | MR | Zbl
,[11] Finite automata and their decision problems. IBM Res. Develop. 3 (1959) 114–129 | DOI | MR | Zbl
and ,[12] Introduction to the theory of computation. Cengage Learning, Boston (2012)
,[13] Regular languages, Chapter 2. In vol. I of Handbook of Formal Languages, edited by and . Springer Heidelberg (1997) 41–110 | DOI | MR | Zbl
,[14] The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125 (1994) 315–328 | DOI | MR | Zbl
, , and ,Cité par Sources :