Edge-bipancyclicity in conditional edge-faulty k-ary n-cubes
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 53 (2019) no. 3-4, pp. 85-113.

The class of k -ary n -cubes represents the most commonly used interconnection topology for parallel and distributed computing systems. In this paper, we consider the faulty k -ary n -cube with even k 4 and n 2 such that each vertex of the k -ary n -cube is incident with at least two healthy edges. Based on this requirement, we investigate the fault-tolerant capabilities of the k -ary n -cube with respect to the edge-bipancyclicity. We prove that in the k -ary n -cube 𝒬 n k , every healthy edge is contained in fault-free cycles of even lengths from 6 to | V ( 𝒬 n k ) | , even if the to $| V \( \mathcal{Q}_n^k \) |$ , even if the 𝒬 n k has up to 4 n 5 edge faults and our result is optimal with respect to the number of edge faults tolerated.

DOI : 10.1051/ita/2019003
Classification : 05C38
Mots-clés : Interconnection network, fault-tolerant, k-ary n-cube, conditional edge-fault, edge-bipancyclicity
Wang, Shiying 1 ; Zhang, Shurong 1

1
@article{ITA_2019__53_3-4_85_0,
     author = {Wang, Shiying and Zhang, Shurong},
     title = {Edge-bipancyclicity in conditional edge-faulty k-ary n-cubes},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {85--113},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3-4},
     year = {2019},
     doi = {10.1051/ita/2019003},
     mrnumber = {4052994},
     zbl = {1439.05122},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ita/2019003/}
}
TY  - JOUR
AU  - Wang, Shiying
AU  - Zhang, Shurong
TI  - Edge-bipancyclicity in conditional edge-faulty k-ary n-cubes
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2019
SP  - 85
EP  - 113
VL  - 53
IS  - 3-4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ita/2019003/
DO  - 10.1051/ita/2019003
LA  - en
ID  - ITA_2019__53_3-4_85_0
ER  - 
%0 Journal Article
%A Wang, Shiying
%A Zhang, Shurong
%T Edge-bipancyclicity in conditional edge-faulty k-ary n-cubes
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2019
%P 85-113
%V 53
%N 3-4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ita/2019003/
%R 10.1051/ita/2019003
%G en
%F ITA_2019__53_3-4_85_0
Wang, Shiying; Zhang, Shurong. Edge-bipancyclicity in conditional edge-faulty k-ary n-cubes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 53 (2019) no. 3-4, pp. 85-113. doi : 10.1051/ita/2019003. http://archive.numdam.org/articles/10.1051/ita/2019003/

[1] N.R. Adiga, M.A. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Heidelberger, S. Singh, B.D. Steinmacher-Burow, T. Takken, M. Tsao, P. Vranas, Blue Gene/L torus interconnection network. IBM J. Res. Dev. 49 (2005) 265–276. | DOI

[2] Y.A. Ashir, I.A. Stewart, On embedding cycles in k-ary n-cubes. Paral. Process. Lett. 7 (1997) 49–55. | DOI | MR

[3] Y.A. Ashir, I.A. Stewart, Fault-tolerant embeddings of hamiltonian circuits in k-ary n-cubes. SIAM J. Discr. Math. 15 (2002) 317–328. | DOI | MR | Zbl

[4] J.A. Bondy, U.S.R. Murty, Graph Theory. Springer, New York (2007). | MR | Zbl

[5] B. Bose, B. Broeg, Y. Kwon, Y. Ashir, Lee distance and topological properties of k-ary n-cubes. IEEE Trans. Comput. 44 (1995) 1021–1030. | DOI | MR | Zbl

[6] K. Day, A.-E. Al-Ayyoub, Fault diameter of k-ary n-cube networks. IEEE Trans. Paral. Distrib. Syst. 8 (1997) 903–907. | DOI

[7] S.-Y. Hsieh, T.-H. Shen, Edge-bipancyclicity of a hypercube with faulty vertices and edges. Discr. Appl. Math. 156 (2008) 1802–1808. | DOI | MR | Zbl

[8] R.E. Kessler, J.L. Schwarzmeier, Cray T3D: a new dimension for cray research. Proceedings of 38th IEEE Computer Society International Conference, IEEE Press (1993) 176–182.

[9] H.-C. Kim, J.-H. Park, Fault hamiltonicity of two-dimensional torus networks, Proceedings of Workshop on Algorithms and Computation WAAC’00, Tokyo, Japan (2000) 110–117.

[10] C.-N. Kuo, S.-Y. Hsieh, Pancyclicity and bipancyclicity of conditional faulty folded hypercubes. Inf. Sci. 180 (2010) 2904–2914. | DOI | MR | Zbl

[11] J. Li, S. Wang, D. Liu, Pancyclicity of ternary n-cube networks under the conditional fault model. Inf. Process. Lett. 111 (2011) 370–374. | DOI | MR | Zbl

[12] J. Li, S. Wang, D. Liu, S. Lin, Edge-bipancyclicity of the k-ary n-cubes with faulty nodes and edges. Inf. Sci. 181 (2011) 2260–2267. | DOI | MR | Zbl

[13] C. Peterson, J. Sutton, P. Wiley, iWarp: A 100-MOPS LIW microprocessor for multicomputers. IEEE Micro 11 (1991) 26–37. | DOI

[14] I.A. Stewart, Y. Xiang, Embedding long paths in k-ary n-cubes with faulty nodes and links. IEEE Trans. Paral. Distrib. Syst. 19 (2008) 1071–1085. | DOI

[15] C.-H. Tsai, Y.-C. Lai, Conditional edge-fault-tolerant edge-bipancyclicity of hypercubes. Inf. Sci. 177 (2007) 5590–5597. | DOI | MR | Zbl

[16] S. Wang, S. Lin, Path embeddings in faulty 3-ary n-cubes. Inf. Sci. 180 (2010) 191–197. | DOI | MR | Zbl

[17] S. Wang, S. Zhang, Embedding hamiltonian paths in k-ary n-cubes with conditional edge faults. Theor. Comput. Sci. 412 (2011) 6570–6584. | DOI | MR | Zbl

[18] Y. Xiang, I.A. Stewart, Bipancyclicity in k-ary n-cubes with faulty edges under a conditional fault assumption. IEEE Trans. Parallel Distrib. Syst. 22 (2011) 1506–1513. | DOI

Cité par Sources :