The class of -ary -cubes represents the most commonly used interconnection topology for parallel and distributed computing systems. In this paper, we consider the faulty -ary -cube with even and such that each vertex of the -ary -cube is incident with at least two healthy edges. Based on this requirement, we investigate the fault-tolerant capabilities of the -ary -cube with respect to the edge-bipancyclicity. We prove that in the -ary -cube , every healthy edge is contained in fault-free cycles of even lengths from to , even if the to $| V \( \mathcal{Q}_n^k \) |$ , even if the has up to edge faults and our result is optimal with respect to the number of edge faults tolerated.
Mots-clés : Interconnection network, fault-tolerant, k-ary n-cube, conditional edge-fault, edge-bipancyclicity
@article{ITA_2019__53_3-4_85_0, author = {Wang, Shiying and Zhang, Shurong}, title = {Edge-bipancyclicity in conditional edge-faulty k-ary n-cubes}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {85--113}, publisher = {EDP-Sciences}, volume = {53}, number = {3-4}, year = {2019}, doi = {10.1051/ita/2019003}, mrnumber = {4052994}, zbl = {1439.05122}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2019003/} }
TY - JOUR AU - Wang, Shiying AU - Zhang, Shurong TI - Edge-bipancyclicity in conditional edge-faulty k-ary n-cubes JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2019 SP - 85 EP - 113 VL - 53 IS - 3-4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2019003/ DO - 10.1051/ita/2019003 LA - en ID - ITA_2019__53_3-4_85_0 ER -
%0 Journal Article %A Wang, Shiying %A Zhang, Shurong %T Edge-bipancyclicity in conditional edge-faulty k-ary n-cubes %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2019 %P 85-113 %V 53 %N 3-4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2019003/ %R 10.1051/ita/2019003 %G en %F ITA_2019__53_3-4_85_0
Wang, Shiying; Zhang, Shurong. Edge-bipancyclicity in conditional edge-faulty k-ary n-cubes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 53 (2019) no. 3-4, pp. 85-113. doi : 10.1051/ita/2019003. http://archive.numdam.org/articles/10.1051/ita/2019003/
[1] Blue Gene/L torus interconnection network. IBM J. Res. Dev. 49 (2005) 265–276. | DOI
, , , , , , , , , , , ,[2] On embedding cycles in k-ary n-cubes. Paral. Process. Lett. 7 (1997) 49–55. | DOI | MR
, ,[3] Fault-tolerant embeddings of hamiltonian circuits in k-ary n-cubes. SIAM J. Discr. Math. 15 (2002) 317–328. | DOI | MR | Zbl
, ,[4] Graph Theory. Springer, New York (2007). | MR | Zbl
, ,[5] Lee distance and topological properties of k-ary n-cubes. IEEE Trans. Comput. 44 (1995) 1021–1030. | DOI | MR | Zbl
, , , ,[6] Fault diameter of k-ary n-cube networks. IEEE Trans. Paral. Distrib. Syst. 8 (1997) 903–907. | DOI
, ,[7] Edge-bipancyclicity of a hypercube with faulty vertices and edges. Discr. Appl. Math. 156 (2008) 1802–1808. | DOI | MR | Zbl
, ,[8] Cray T3D: a new dimension for cray research. Proceedings of 38th IEEE Computer Society International Conference, IEEE Press (1993) 176–182.
, ,[9] Fault hamiltonicity of two-dimensional torus networks, Proceedings of Workshop on Algorithms and Computation WAAC’00, Tokyo, Japan (2000) 110–117.
, ,[10] Pancyclicity and bipancyclicity of conditional faulty folded hypercubes. Inf. Sci. 180 (2010) 2904–2914. | DOI | MR | Zbl
, ,[11] Pancyclicity of ternary n-cube networks under the conditional fault model. Inf. Process. Lett. 111 (2011) 370–374. | DOI | MR | Zbl
, , ,[12] Edge-bipancyclicity of the k-ary n-cubes with faulty nodes and edges. Inf. Sci. 181 (2011) 2260–2267. | DOI | MR | Zbl
, , , ,[13] iWarp: A 100-MOPS LIW microprocessor for multicomputers. IEEE Micro 11 (1991) 26–37. | DOI
, , ,[14] Embedding long paths in k-ary n-cubes with faulty nodes and links. IEEE Trans. Paral. Distrib. Syst. 19 (2008) 1071–1085. | DOI
, ,[15] Conditional edge-fault-tolerant edge-bipancyclicity of hypercubes. Inf. Sci. 177 (2007) 5590–5597. | DOI | MR | Zbl
, ,[16] Path embeddings in faulty 3-ary n-cubes. Inf. Sci. 180 (2010) 191–197. | DOI | MR | Zbl
, ,[17] Embedding hamiltonian paths in k-ary n-cubes with conditional edge faults. Theor. Comput. Sci. 412 (2011) 6570–6584. | DOI | MR | Zbl
, ,[18] Bipancyclicity in k-ary n-cubes with faulty edges under a conditional fault assumption. IEEE Trans. Parallel Distrib. Syst. 22 (2011) 1506–1513. | DOI
, ,Cité par Sources :