We construct an infinite word w over the 5-letter alphabet such that for every factor f of w of length at least two, there exists a cyclic permutation of f that is not a factor of w. In other words, w does not contain a non-trivial conjugacy class. This proves the conjecture in Gamard et al. [Theoret. Comput. Sci. 726 (2018) 1–4].
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ita/2020003
Mots-clés : Combinatorics on words, conjugacy classes
@article{ITA_2020__54_1_A2_0, author = {Badkobeh, Golnaz and Ochem, Pascal}, title = {Avoiding conjugacy classes on the 5-letter alphabet}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, publisher = {EDP-Sciences}, volume = {54}, year = {2020}, doi = {10.1051/ita/2020003}, mrnumber = {4078186}, zbl = {1457.68226}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2020003/} }
TY - JOUR AU - Badkobeh, Golnaz AU - Ochem, Pascal TI - Avoiding conjugacy classes on the 5-letter alphabet JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2020 VL - 54 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2020003/ DO - 10.1051/ita/2020003 LA - en ID - ITA_2020__54_1_A2_0 ER -
%0 Journal Article %A Badkobeh, Golnaz %A Ochem, Pascal %T Avoiding conjugacy classes on the 5-letter alphabet %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2020 %V 54 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2020003/ %R 10.1051/ita/2020003 %G en %F ITA_2020__54_1_A2_0
Badkobeh, Golnaz; Ochem, Pascal. Avoiding conjugacy classes on the 5-letter alphabet. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 54 (2020), article no. 2. doi : 10.1051/ita/2020003. http://archive.numdam.org/articles/10.1051/ita/2020003/
[1] Growth problems for avoidable words. Theoret. Comput. Sci. 69 (1989) 19–345. | DOI | MR | Zbl
, and ,[2] Avoidable patterns in strings of symbols. Pacific J. Math. 85 (1979) 261–294. | DOI | MR | Zbl
, and ,[3] Iterative Algebras. Algebr. Represent. Theor. 18 (2015) 1533–1546. | DOI | MR | Zbl
and ,[4] Avoidable formulas in combinatorics on words. Ph.D. thesis, University of California, Los Angeles. Available at http://www.lirmm.fr/~ochem/morphisms/clark˙thesis.pdf (2001). | MR
,[5] Avoidability of circular formulas. Theoret. Comput. Sci. 726 (2018) 1–4. | DOI | MR | Zbl
, , and ,[6] A generalization of repetition threshold. Theoret. Comput. Sci. 92 (2004) 71–76. | MR
, and ,[7] A generator of morphisms for infinite words. RAIRO: ITA 40 (2006) 427–441. | Numdam | MR | Zbl
,[8] Blocking sets of terms. Math. USSR Sbornik 47 (1984) 353–364. | DOI | MR | Zbl
,Cité par Sources :