The repetition threshold for words on n letters, denoted RT(n), is the infimum of the set of all r such that there are arbitrarily long r-free words over n letters. A repetition threshold for circular words on n letters can be defined in three natural ways, which gives rise to the weak, intermediate, and strong circular repetition thresholds for n letters, denoted CRTW(n), CRTI(n), and CRTS(n), respectively. Currie and the present authors conjectured that CRTI(n) = CRTW(n) = RT(n) for all n ≥ 4. We prove that CRTW(n) = RT(n) for all n ≥ 45, which confirms a weak version of this conjecture for all but finitely many values of n.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ita/2020006
Mots-clés : Repetition threshold, circular repetition threshold, repetition threshold for graphs, Dejean’s conjecture, Dejean’s theorem, nonrepetitive colouring
@article{ITA_2020__54_1_A6_0, author = {Mol, Lucas and Rampersad, Narad}, title = {The weak circular repetition threshold over large alphabets}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, publisher = {EDP-Sciences}, volume = {54}, year = {2020}, doi = {10.1051/ita/2020006}, mrnumber = {4169251}, zbl = {1508.68272}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2020006/} }
TY - JOUR AU - Mol, Lucas AU - Rampersad, Narad TI - The weak circular repetition threshold over large alphabets JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2020 VL - 54 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2020006/ DO - 10.1051/ita/2020006 LA - en ID - ITA_2020__54_1_A6_0 ER -
%0 Journal Article %A Mol, Lucas %A Rampersad, Narad %T The weak circular repetition threshold over large alphabets %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2020 %V 54 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2020006/ %R 10.1051/ita/2020006 %G en %F ITA_2020__54_1_A6_0
Mol, Lucas; Rampersad, Narad. The weak circular repetition threshold over large alphabets. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 54 (2020), article no. 6. doi : 10.1051/ita/2020006. http://archive.numdam.org/articles/10.1051/ita/2020006/
[1] There exist binary circular 5∕2+ power free words of every length. Electron. J. Combin. 11 (2004) #R10. | DOI | MR | Zbl
and ,[2] Attainable lengths for circular binary words avoiding k powers. Bull. Belg. Math. Soc. Simon Stevin 12 (2005) 525–534. | DOI | MR | Zbl
and ,[3] Nonrepetitive colorings of graphs. Random Struct. Algorithms 21 (2002) 336–346. | DOI | MR | Zbl
, , and ,[4] Axel Thue’s Papers on Repetitions in Words: A Translation. Publications du LaCIM, Université du Québec à Montréal, vol. 20 (1995).
,[5] On Dejean’s conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137–151. | DOI | MR | Zbl
,[6] Toeplitz words, generalized periodicity and periodically iterated morphisms. European J. Combin. 18 (1997) 497–510. | DOI | MR | Zbl
and ,[7] A proof of Dejean’s conjecture. Math. Comp. 80 (2011) 1063–1070. | DOI | MR | Zbl
and ,[8] Dejean’s conjecture holds for n ≥ 27. RAIRO: ITA 43 (2009) 775–778. | Numdam | MR | Zbl
, ,[9] Dejean’s conjecture holds for n ≥ 30. Theoret. Comput. Sci. 410 (2009) 2885–2888. | DOI | MR | Zbl
, ,[10] Circular repetition thresholds on some small alphabets: last cases of Gorbunova’s conjecture. Electron. J. Combin. 26 (2018) #P2.31. | DOI | MR | Zbl
, and ,[11] The number of threshold words on n letters grows exponentially for every n ≥ 27. J. Integer Sequences 23 (2020) 20.3.1. | MR | Zbl
, and ,[12] There are ternary circular square-free words of length n for n ≥ 18. Electron. J. Combin. 9 (2002) #N10. | DOI | MR | Zbl
,[13] Sur un théorème de Thue. J. Combin. Theory Ser. A 13 (1972) 90–99. | DOI | MR | Zbl
,[14] Planar graphs have bounded nonrepetitive chromatic number, Adv. Comb. 5 (2020) 11. | MR | Zbl
, , , and ,[15] Repetition threshold for circular words. Electron. J. Combin. 19 (2012) #P11. | DOI | MR | Zbl
,[16] Algebraic Combinatorics on Words, Cambridge University Press (2002). | DOI | MR | Zbl
,[17] On repetition thresholds of caterpillars and trees of bounded degree. Electron. J. Combin. 25 (2018) #P1.61. | DOI | MR | Zbl
, and ,[18] Dejean’s conjecture and Sturmian words. European J. Combin. 28 (2007) 876–890. | DOI | MR | Zbl
and ,[19] Proof of Dejean’s conjecture for alphabets with 5, 6, 7, 8, 9, 10, and 11 letters. Theoret. Comput. Sci. 95 (1992) 187–205. | DOI | MR | Zbl
,[20] Automatic theorem proving in Walnut. Preprint (2016). | arXiv
,[21] Repetition thresholds for subdivided graphs and trees. RAIRO: ITA 46 (2012) 123–130. | Numdam | MR | Zbl
and ,[22] A propos d’une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7 (1984) 297–311. | DOI | MR | Zbl
,[23] Last cases of Dejean’s conjecture. Theoret. Comput. Sci. 412 (2011) 3010–3018. | DOI | MR | Zbl
,[24] On the existence of minimal β-powers. Internat. J. Found. Comput. Sci. 22 (2011) 1683–1696. | DOI | MR | Zbl
,Cité par Sources :