Word and tree codes are studied in a common framework, that of polypodes which are sets endowed with a substitution like operation. Many examples are given and basic properties are examined. The code decomposition theorem is valid in this general setup.
@article{ITA_2002__36_1_5_0, author = {Bozapalidis, Symeon and Louscou-Bozapalidou, Olympia}, title = {Polypodic codes}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {5--28}, publisher = {EDP-Sciences}, volume = {36}, number = {1}, year = {2002}, doi = {10.1051/ita:2002002}, zbl = {1013.68085}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2002002/} }
TY - JOUR AU - Bozapalidis, Symeon AU - Louscou-Bozapalidou, Olympia TI - Polypodic codes JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 5 EP - 28 VL - 36 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2002002/ DO - 10.1051/ita:2002002 LA - en ID - ITA_2002__36_1_5_0 ER -
%0 Journal Article %A Bozapalidis, Symeon %A Louscou-Bozapalidou, Olympia %T Polypodic codes %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 5-28 %V 36 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2002002/ %R 10.1051/ita:2002002 %G en %F ITA_2002__36_1_5_0
Bozapalidis, Symeon; Louscou-Bozapalidou, Olympia. Polypodic codes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 1, pp. 5-28. doi : 10.1051/ita:2002002. http://archive.numdam.org/articles/10.1051/ita:2002002/
[1] An Introduction to Polypodic Structures. J. Universal Comput. Sci. 5 (1999) 508-520. | MR | Zbl
,[2] Theory of Codes. Academic Press (1985). | MR | Zbl
and ,[3] Graph rewriting: An Algebraic and Logic Approach, edited by J. van Leeuwen. Elsevier, Amsterdam, Handb. Theoret. Comput. Sci. B (1990) 193-242. | MR | Zbl
,[4] Tree Languages, edited by G. Rozenberg and A. Salomaa. Springer-Verlag, New York, Handb. Formal Lang. 3, pp. 1-68. | MR
and ,[5] Algebraic Theory of m-automata, edited by Z. Kohavi and A. Paz. Academic Press, New York, Theory of Machines and Computation (1971) 275-286.
,[6] Tree Automata and tree Grammars. DAIMI FN-10 (1975).
,[7] Super Associative Systems and Logical Functions. Math. Ann. 157 (1964) 278-295. | EuDML | MR | Zbl
,[8] Tree Codes and Equations1998) 119-132.
and ,[9] Binary Tree Codes. Tree Automata and Languages. Elsevier Science Publishers B.V. North Holland (1992) 1-19. | MR | Zbl
,Cité par Sources :