Feedback, trace and fixed-point semantics
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 2, pp. 181-194.

We introduce a notion of category with feedback-with-delay, closely related to the notion of traced monoidal category, and show that the Circ construction of [15] is the free category with feedback on a symmetric monoidal category. Combining with the Int construction of Joyal et al. [12] we obtain a description of the free compact closed category on a symmetric monoidal category. We thus obtain a categorical analogue of the classical localization of a ring with respect to a multiplicative subset. In this context we define a notion of fixed-point semantics of a category with feedback which is seen to include a variety of classical semantics in computer science.

DOI : 10.1051/ita:2002009
Classification : 68Q55, 68Q70, 18D10
@article{ITA_2002__36_2_181_0,
     author = {Katis, P. and Sabadini, Nicoletta and Walters, Robert F. C.},
     title = {Feedback, trace and fixed-point semantics},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {181--194},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {2},
     year = {2002},
     doi = {10.1051/ita:2002009},
     mrnumber = {1948768},
     zbl = {1050.68100},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ita:2002009/}
}
TY  - JOUR
AU  - Katis, P.
AU  - Sabadini, Nicoletta
AU  - Walters, Robert F. C.
TI  - Feedback, trace and fixed-point semantics
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2002
SP  - 181
EP  - 194
VL  - 36
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ita:2002009/
DO  - 10.1051/ita:2002009
LA  - en
ID  - ITA_2002__36_2_181_0
ER  - 
%0 Journal Article
%A Katis, P.
%A Sabadini, Nicoletta
%A Walters, Robert F. C.
%T Feedback, trace and fixed-point semantics
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2002
%P 181-194
%V 36
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ita:2002009/
%R 10.1051/ita:2002009
%G en
%F ITA_2002__36_2_181_0
Katis, P.; Sabadini, Nicoletta; Walters, Robert F. C. Feedback, trace and fixed-point semantics. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 2, pp. 181-194. doi : 10.1051/ita:2002009. http://archive.numdam.org/articles/10.1051/ita:2002009/

[1] S. Abramsky, Retracing some paths in process algebras, Concur '96, edited by U. Montanari and V. Sassone. Springer-Verlag, Lecture Notes in Comput. Sci. 1119 (1996) 1-17

[2] M. Bartha, An algebraic model of synchronous systems. Inform. and Comput. 97 (1992) 97-131. | MR | Zbl

[3] L. Bernatsky and Z. Ésik, Sematics of flowchart programs and the free Conway theories. RAIRO: Theoret. Informatics Applic. 32 (1998) 35-78. | Numdam | MR

[4] S.L. Bloom and Z. Ésik, Axiomatising schemes and their behaviours. J. Comput. System Sci. 31 (1985) 375-393. | MR | Zbl

[5] S.L. Bloom and Z. Ésik, Iteration Theories: The Equational Logic of Iterative Processes. Springer-Verlag, EATCS Monogr. Theoret. Comput. Sci. (1993). | MR | Zbl

[6] S.L. Bloom and Z. Ésik, Matrix and matricial iteration theories, Part I. J. Comput. System Sci. 46 (1993) 381-408. | MR | Zbl

[7] S.L. Bloom, N. Sabadini and R.F.C. Walters, Matrices, machines and behaviors. Appl. Categorical Structures 4 (1996) 343-360. | MR | Zbl

[8] R.F. Blute, J.R.B. Cockett and R.A.G. Seely, Feedback for linearly distributive categories: Traces and fixpoints. J. Pure Appl. Algebra 154 (2000) 27-69. | MR | Zbl

[9] A. Carboni and R.F.C. Walters, Cartesian Bicategories I. J. Pure Appl. Algebra 49 (1987) 11-32. | MR | Zbl

[10] J. Conway, Regular Algebra and Finite Machines. Chapman and Hall, London (1971). | Zbl

[11] C.C. Elgot, Monadic computation and iterative algebraic theories, edited by J.C. Shepherdson. North Holland, Amsterdam, Logic Colloquium 1973, Studies in Logic 80 (1975). | MR | Zbl

[12] C.C. Elgot, Matricial Theories. J. Algebra 42 (1976) 391-421. | MR | Zbl

[13] F. Gadducci, U. Montanari, P. Katis, N. Sabadini and R.F.C. Walters, Comparing Cospan-spans and Tiles via a Hoare-style process calculus. TOSCA Udine, Electron. Notes Theoret. Comput. Sci. 62 (2001) 152-171.

[14] M. Hasegawa, Models of Sharing Graphs: A categorical semantics of let and letrec, Ph.D. Thesis. Edinburgh (1997), Springer (1999). | MR | Zbl

[15] A. Joyal, R. Street and D. Verity, Traced monoidal categories. Math. Proc. Camb. Phil. Soc. 119 (1996) 447-468. | MR | Zbl

[16] A. Joyal and R. Street, Braided tensor categories. Adv. in Math. 102 (1993) 20-78. | MR | Zbl

[17] W. Khalil and R.F.C. Walters, An imperative language based on distributive categories II. RAIRO: Theoret. Informatics Appl. 27 (1993) 503-522. | Numdam | MR | Zbl

[18] P. Katis, N. Sabadini and R.F.C. Walters, Bicategories of processes. J. Pure Appl. Algebra 115 (1997) 141-178. | MR | Zbl

[19] P. Katis, N. Sabadini and R.F.C. Walters, Span(Graph): A categorical algebra of transition systems, in Proc. Algebraic Methodology and Software Technology. Springer-Verlag, Lecture Notes in Comput. Sci. 1349 (1997) 307-321. | Zbl

[20] P. Katis, N. Sabadini and R.F.C. Walters, On the algebra of systems with feedback and boundary. Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000) 123-156. | MR | Zbl

[21] P. Katis, N. Sabadini and R.F.C. Walters, A formalization of the IWIM Model, in Proc. COORDINATION 2000, edited by A. Porto and G.-C. Roman. Springer-Verlag, Lecture Notes in Comput. Sci. 1906 (2000) 267-283.

[22] P. Katis, N. Sabadini and R.F.C. Walters, Recursion and concurrency, Invited talk, FICS 2001. Florence (2001).

[23] P. Katis and R.F.C. Walters, The compact closed bicategory of left adjoints. Math. Proc. Camb. Phil. Soc. 130 (2001) 77-87. | MR | Zbl

[24] G.M. Kelly and M. Laplaza, Coherence for compact closed categories. J. Pure Appl. Algebra 19 (1980) 193-213. | MR | Zbl

[25] K. Krohn and J. Rhodes, Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines. Trans. Amer. Math. Soc. 116 (1965) 450-464. | MR | Zbl

[26] M. Nagata, Local rings. Interscience (1962). | MR | Zbl

[27] R. Penrose, Applications of negative dimensional torsors, edited by D.J.A. Welsh. Academic Press, New York, Comb. Math. Appl. (1971) 221-244. | MR | Zbl

[28] W.J. Rugh, Linear System Theory, Second Edition. Prentice Hall (1996). | MR | Zbl

[29] J.J.M.M. Rutten, A calculus of transition systems (towards universal coalgebra), in Modal Logic and Process Algebra, a bisimulation perspective, edited by A. Ponse, M. de Rijke and Y. Venema. CSLI Publications, Standford, CSLI Lecture Notes 53 (1995) 231-256. | MR

[30] N. Sabadini, S. Vigna and R.F.C. Walters, A note on recursive functions. Math. Struct. Comput. Sci. 6 (1996) 127-139. | MR | Zbl

[31] M.W. Shields, An introduction to Automata Theory. Blackwell Scientic Publications, Oxford (1987).

[32] A. Simpson and G. Plotkin, Complete axioms for categorical fixed-point operators, in Proc. 15th LICS (2000) 30-41. | MR

[33] Gh. Stefanescu, On flowchart theories I: The deterministic case. J. Comput. System Sci. 35 (1985) 163-191. | MR | Zbl

[34] G. Stefanescu, Network Algebra. Springer-Verlag (2000). | MR | Zbl

[35] R.F.C. Walters, Categories and Computer Science. Carslaw Publications (1991), Cambridge University Press (1992). | MR | Zbl

Cité par Sources :