We investigate a Gentzen-style proof system for the first-order
Mots-clés : inductive reasoning, circular proofs, well-foundedness, global consistency condition,
@article{ITA_2003__37_4_365_0, author = {Sprenger, Christoph and Dam, Mads}, title = {On global induction mechanisms in a $\mu $-calculus with explicit approximations}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {365--391}, publisher = {EDP-Sciences}, volume = {37}, number = {4}, year = {2003}, doi = {10.1051/ita:2003024}, mrnumber = {2053032}, zbl = {1111.68518}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita:2003024/} }
TY - JOUR AU - Sprenger, Christoph AU - Dam, Mads TI - On global induction mechanisms in a $\mu $-calculus with explicit approximations JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 365 EP - 391 VL - 37 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita:2003024/ DO - 10.1051/ita:2003024 LA - en ID - ITA_2003__37_4_365_0 ER -
%0 Journal Article %A Sprenger, Christoph %A Dam, Mads %T On global induction mechanisms in a $\mu $-calculus with explicit approximations %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 365-391 %V 37 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita:2003024/ %R 10.1051/ita:2003024 %G en %F ITA_2003__37_4_365_0
Sprenger, Christoph; Dam, Mads. On global induction mechanisms in a $\mu $-calculus with explicit approximations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 4, pp. 365-391. doi : 10.1051/ita:2003024. https://www.numdam.org/articles/10.1051/ita:2003024/
[1] System description: Verification of distributed Erlang programs. Lecture Notes in Artificial Intelligence 1421 (1998) 38-41.
, , and ,[2] Local model checking for infinite state spaces. Theor. Comput. Sci. 96 (1992) 157-174. | MR | Zbl
and ,[3] Proving properties of dynamic process networks. Inf. Comput. 140 (1998) 95-114. | MR | Zbl
,
[4]
[5] Modalities for model checking: branching time strikes back. Sci. Comput. Program. 8 (1987) 275-306. | MR | Zbl
and ,[6] A Framework for Reasoning about Erlang Code. Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden (2001).
,
[7] Results on the propositional
[8] Games for the
[9] Finiteness is mu-ineffable. Theor. Comput. Sci. 3 (1976) 173-181. | MR | Zbl
,
[10] On the complexity of
[11] Formal verification of processes. Master's thesis, University of Edinburgh (2001)
,[12] Verifying temporal properties using explicit approximants: Completeness for context-free processes, in Foundations of Software Science and Computational Structures (FoSSaCS 02), Grenoble, France. Springer, Lecture Notes in Comput. Sci. 2303 (2002) 372-386. | MR | Zbl
and ,
[13] On the structure of inductive reasoning: Circular and tree-shaped proofs in the
[14] Local model checking in the modal
[15] Automata on infinite objects. J. van Leeuwen, Elsevier Science Publishers, Amsterdam, Handb. Theor. Comput. Sci. B (1990) 133-191. | MR | Zbl
,- From GTC to : Generating reset proof systems from cyclic proof systems, Annals of Pure and Applied Logic, Volume 175 (2024) no. 10, p. 103485 | DOI:10.1016/j.apal.2024.103485
- Abstract cyclic proofs, Mathematical Structures in Computer Science, Volume 34 (2024) no. 7, p. 552 | DOI:10.1017/s0960129524000070
- PROOF SYSTEMS FOR TWO-WAY MODAL MU-CALCULUS, The Journal of Symbolic Logic (2023), p. 1 | DOI:10.1017/jsl.2023.60
- Cyclic Arithmetic Is Equivalent to Peano Arithmetic, Foundations of Software Science and Computation Structures, Volume 10203 (2017), p. 283 | DOI:10.1007/978-3-662-54458-7_17
- A Generic Cyclic Theorem Prover, Programming Languages and Systems, Volume 7705 (2012), p. 350 | DOI:10.1007/978-3-642-35182-2_25
- Sequent calculi for induction and infinite descent, Journal of Logic and Computation, Volume 21 (2011) no. 6, p. 1177 | DOI:10.1093/logcom/exq052
- , 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007) (2007), p. 51 | DOI:10.1109/lics.2007.16
- Formalised Inductive Reasoning in the Logic of Bunched Implications, Static Analysis, Volume 4634 (2007), p. 87 | DOI:10.1007/978-3-540-74061-2_6
- Cyclic Proofs for First-Order Logic with Inductive Definitions, Automated Reasoning with Analytic Tableaux and Related Methods, Volume 3702 (2005), p. 78 | DOI:10.1007/11554554_8
Cité par 9 documents. Sources : Crossref