We study the complexity of the infinite word associated with the Rényi expansion of in an irrational base . When is the golden ratio, this is the well known Fibonacci word, which is sturmian, and of complexity . For such that is finite we provide a simple description of the structure of special factors of the word . When we show that . In the cases when or we show that the first difference of the complexity function takes value in for every , and consequently we determine the complexity of . We show that is an Arnoux-Rauzy sequence if and only if . On the example of , solution of , we illustrate that the structure of special factors is more complicated for infinite eventually periodic. The complexity for this word is equal to .
Mots-clés : beta-expansions, complexity of infinite words
@article{ITA_2004__38_2_163_0, author = {Frougny, Christiane and Mas\'akov\'a, Zuzana and Pelantov\'a, Edita}, title = {Complexity of infinite words associated with beta-expansions}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {163--185}, publisher = {EDP-Sciences}, volume = {38}, number = {2}, year = {2004}, doi = {10.1051/ita:2004009}, mrnumber = {2060775}, zbl = {1104.11013}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2004009/} }
TY - JOUR AU - Frougny, Christiane AU - Masáková, Zuzana AU - Pelantová, Edita TI - Complexity of infinite words associated with beta-expansions JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2004 SP - 163 EP - 185 VL - 38 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2004009/ DO - 10.1051/ita:2004009 LA - en ID - ITA_2004__38_2_163_0 ER -
%0 Journal Article %A Frougny, Christiane %A Masáková, Zuzana %A Pelantová, Edita %T Complexity of infinite words associated with beta-expansions %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2004 %P 163-185 %V 38 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2004009/ %R 10.1051/ita:2004009 %G en %F ITA_2004__38_2_163_0
Frougny, Christiane; Masáková, Zuzana; Pelantová, Edita. Complexity of infinite words associated with beta-expansions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 38 (2004) no. 2, pp. 163-185. doi : 10.1051/ita:2004009. http://archive.numdam.org/articles/10.1051/ita:2004009/
[1] Sur la complexité des suites infinies. Bull. Belg. Math. Soc. Simon Stevin 1 (1994) 133-143. | MR | Zbl
,[2] Représentation géométrique de suites de complexité . Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | MR | Zbl
et ,[3] Recent results on extensions of Sturmian words. J. Algebra Comput. 12 (2003) 371-385. | MR | Zbl
,[4] Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris 285A (1977) 419-421. | MR | Zbl
,[5] Comment écrire les nombres entiers dans une base qui n'est pas entière. Acta Math. Acad. Sci. Hungar. 54 (1989) 237-241. | Zbl
,[6] Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 67-88. | MR | Zbl
,[7] Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier 50 (2000) 1265-1276. | Numdam | MR | Zbl
, and ,[8] Substitutions et -systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219-236. | MR | Zbl
,[9] Additive and multiplicative properties of point sets based on beta-integers. Theoret. Comput. Sci. 303 (2003) 491-516. | MR | Zbl
, and ,[10] Algebraic combinatorics on words. Cambridge University Press (2002). | MR | Zbl
,[11] On the -expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. | MR | Zbl
,[12] Statistics of substitution sequences. On-line computer program, available at http://kmlinux.fjfi.cvut.cz/~patera/SubstWords.cgi
,[13] Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | MR | Zbl
,[14] On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980) 269-278. | MR | Zbl
,[15] Groups, tilings, and finite state automata. Geometry supercomputer project research report GCG1, University of Minnesota (1989).
,[16] Complexity and balances of the infinite word of -integers for , in Proc. of Words'03, Turku. TUCS Publication 27 (2003) 138-148. | Zbl
,Cité par Sources :