We give a linear time algorithm which, given a simply connected figure of the plane divided into cells, whose boundary is crossed by some colored inputs and outputs, produces non-intersecting directed flow lines which match inputs and outputs according to the colors, in such a way that each edge of any cell is crossed by at most one line. The main tool is the notion of height function, previously introduced for tilings. It appears as an extension of the notion of potential of a flow in a planar graph.
@article{ITA_2004__38_3_229_0, author = {Dorkenoo, Marius and Eglin-Leclerc, Marie-Christine and R\'emila, Eric}, title = {Algebraic tools for the construction of colored flows with boundary constraints}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {229--243}, publisher = {EDP-Sciences}, volume = {38}, number = {3}, year = {2004}, doi = {10.1051/ita:2004011}, mrnumber = {2076401}, zbl = {1060.05055}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2004011/} }
TY - JOUR AU - Dorkenoo, Marius AU - Eglin-Leclerc, Marie-Christine AU - Rémila, Eric TI - Algebraic tools for the construction of colored flows with boundary constraints JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2004 SP - 229 EP - 243 VL - 38 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2004011/ DO - 10.1051/ita:2004011 LA - en ID - ITA_2004__38_3_229_0 ER -
%0 Journal Article %A Dorkenoo, Marius %A Eglin-Leclerc, Marie-Christine %A Rémila, Eric %T Algebraic tools for the construction of colored flows with boundary constraints %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2004 %P 229-243 %V 38 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2004011/ %R 10.1051/ita:2004011 %G en %F ITA_2004__38_3_229_0
Dorkenoo, Marius; Eglin-Leclerc, Marie-Christine; Rémila, Eric. Algebraic tools for the construction of colored flows with boundary constraints. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 38 (2004) no. 3, pp. 229-243. doi : 10.1051/ita:2004011. http://archive.numdam.org/articles/10.1051/ita:2004011/
[1] Pavages et Graphes de Cayley. Ph.D. Thesis, École Normale Supérieure de Lyon (1995).
,[2] Tiling with Polyominoes and Combinatorial Group Theory. J. Combin. Theory A 53 (1990) 183-208. | Zbl
and ,[3] Maximum flows in planar networks. Inform. Proc. Lett. 13 (1981) 107. | MR
,[4] An algorithm for maximum flow in undirected planar networks. SIAM J. Comput. 14 (1985) 612-624. | Zbl
and ,[5] Tiling a polygon with rectangles. Proc. 33rd FOCS (1992) 610-619. | Zbl
and ,[6] Kac-Moody symmetries of critical ground states. Nuclear Phys. B 464 (1996) 540-575. | Zbl
and ,[7] A Polyomino Tiling of Thurston and its Configurational Entropy. J. Combin. Theory A 63 (1993) 338-358. | Zbl
and ,[8] Combinatorial Group Theory. Dover Publications, Inc. (1976). | MR | Zbl
, and ,[9] A pedestrian approach to a method of Conway, or a tale of two cities. Internal Report, Massachusetts Institute of Technology (1993). | Zbl
,[10] Tiling a figure using a height in a tree, in Proc. of the 7th annual ACM-SIAM Symposium On Discrete Algorithms (SODA). SIAM eds, Philadelphia (1996) 168-174. | Zbl
,[11] Conway's tiling group. Amer. Math. Monthly (1990) 757-773. | Zbl
,Cité par Sources :