Given a basis of pseudoidentities for a pseudovariety of ordered semigroups containing the 5-element aperiodic Brandt semigroup , under the natural order, it is shown that the same basis, over the most general graph over which it can be read, defines the global. This is used to show that the global of the pseudovariety of level of Straubing-Thérien’s concatenation hierarchy has infinite vertex rank.
Mots-clés : semigroup, pseudovariety, semigroupoid, category, pseudoidentity, dot-depth, concatenation hierarchies
@article{ITA_2005__39_1_1_0, author = {Almeida, Jorge and Escada, Ana P.}, title = {The globals of pseudovarieties of ordered semigroups containing $B_2$ and an application to a problem proposed by {Pin}}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {1--29}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005001}, mrnumber = {2132576}, zbl = {1079.20074}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2005001/} }
TY - JOUR AU - Almeida, Jorge AU - Escada, Ana P. TI - The globals of pseudovarieties of ordered semigroups containing $B_2$ and an application to a problem proposed by Pin JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 1 EP - 29 VL - 39 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2005001/ DO - 10.1051/ita:2005001 LA - en ID - ITA_2005__39_1_1_0 ER -
%0 Journal Article %A Almeida, Jorge %A Escada, Ana P. %T The globals of pseudovarieties of ordered semigroups containing $B_2$ and an application to a problem proposed by Pin %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 1-29 %V 39 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2005001/ %R 10.1051/ita:2005001 %G en %F ITA_2005__39_1_1_0
Almeida, Jorge; Escada, Ana P. The globals of pseudovarieties of ordered semigroups containing $B_2$ and an application to a problem proposed by Pin. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 1-29. doi : 10.1051/ita:2005001. http://archive.numdam.org/articles/10.1051/ita:2005001/
[1] Hyperdecidable pseudovarieties and the calculation of semidirect products. Int. J. Algebra Comput. 9 (1999) 241-261. | Zbl
,[2] A syntactical proof of locality of DA. Int. J. Algebra Comput. 6 (1996) 165-177. | Zbl
,[3] Finite Semigroups and Universal Algebra. World Scientific, Singapore (1995). English translation. | MR | Zbl
,[4] Finite semigroups: an introduction to a unified theory of pseudovarieties, in Semigroups, Algorithms, Automata and Languages, edited by G.M.S. Gomes, J.-E. Pin and P.V. Silva. World Scientific, Singapore (2002) 3-64. | Zbl
,[5] On finitely based pseudovarieties of the forms and . J. Pure Appl. Algebra 146 (2000) 1-15. | Zbl
, and ,[6] Globals of commutative semigroups: the finite basis problem, decidability, and gaps. Proc. Edinburgh Math. Soc. 44 (2001) 27-47. | Zbl
and ,[7] Profinite categories and semidirect products. J. Pure Appl. Algebra 123 (1998) 1-50. | Zbl
and ,[8] Polynomial operations and rational languages, 4th STACS. Lect. Notes Comput. Sci. 247 (1991) 198-206. | Zbl
,[9] Opérations polynomiales et hiérarchies de concaténation. Theor. Comput. Sci. 91 (1991) 71-84. | Zbl
,[10] Hierarchies of aperiodic languages. RAIRO Inform. Théor. 10 (1976) 33-49.
,[11] The dot-depth hierarchy of star-free languages is infinite. J. Comp. Syst. Sci. 16 (1978) 37-55. | Zbl
and ,[12] Characterizations of locally testable events. Discrete Math. 4 (1973) 243-271. | Zbl
and ,[13] Automata, Languages and Machines, Vol. B. Academic Press, New York (1976). | MR | Zbl
,[14] The theorem of Knast, the and type II conjecture, in Monoids and Semigroups with Applications, edited by J. Rhodes. World Scientific (1991) 453-463. | Zbl
and ,[15] Profinite categories, implicit operations and pseudovarieties of categories. J. Pure Applied Algebra 109 (1996) 61-95. | Zbl
,[16] A semigroup characterization of dot-depth one languages. RAIRO Inform. Théor. 17 (1983) 321-330. | Numdam | Zbl
,[17] Some theorems on graphs congruences. RAIRO Inform. Théor. 17 (1983) 331-342.
,[18] Inverse Semigroups: the Theory of Partial Symmetries. World Scientific, Singapore (1998). | MR | Zbl
,[19] Product of group languages, FCT Conference. Lect. Notes Comput. Sci. 199 (1985) 285-299. | Zbl
and ,[20] Algebraic decision procedures for local testability. Math. Systems Theor. 8 (1974) 60-76. | Zbl
,[21] A variety theorem without complementation. Izvestiya VUZ Matematika 39 (1985) 80-90. English version, Russian Mathem. (Iz. VUZ) 39 (1995) 74-83. | Zbl
,[22] Syntactic Semigroups, Chapter 10 in Handbook of Formal Languages, edited by G. Rosenberg and A. Salomaa, Springer (1997). | MR
,[23] Bridges for concatenation hierarchies, in 25th ICALP, Berlin. Lect. Notes Comput. Sci. 1443 (1998) 431-442. | Zbl
,[24] Monoids of upper triangular matrices, Colloquia Mathematica Societatis Janos Boylai 39, Semigroups, Szeged (1981) 259-272. | Zbl
and ,[25] A Reiterman theorem for pseudovarieties of finite first-order structures. Algebra Universalis 35 (1996) 577-595. | Zbl
and ,[26] Polynomial closure and unambiguous product. Theory Comput. Syst. 30 (1997) 1-39. | Zbl
and ,[27] Ordered categories and ordered semigroups. Comm. Algebra 30 (2002) 5651-5675. | Zbl
, and ,[28] Free combinatorial strict inverse semigroups. J. London Math. Soc. 39 (1989) 102-120. | Zbl
,[29] The Birkhoff theorem for finite algebras. Algebra Universalis 14 (1982) 1-10. | Zbl
,[30] Piecewise testable events, in Proc. 2th GI Conf., Lect. Notes Comput. Sci. 33 (1975) 214-222. | Zbl
,[31] The product of rational languages, in Proc. ICALP 1993, Lect. Notes Comput. Sci. 700 (1993) 430-444.
,[32] A generalization of the Schützenberger product of finite monoids. Theor. Comp. Sci. 13 (1981) 137-150. | Zbl
,[33] Finite semigroup varieties of the form . J. Pure Appl. Algebra 36 (1985) 53-94. | Zbl
,[34] Semigroups and languages of dot-depth two. Theor. Comput. Sci. 58 (1988) 361-378. | Zbl
,[35] On a conjecture concerning dot-depth two languages. Theor. Comput. Sci. 104 (1992) 161-183. | Zbl
and ,[36] Graph congruences and wreath products. J. Pure Appl. Algebra 36 (1985) 205-215. | Zbl
and ,[37] Categories as algebras: an essential ingredient in the theory of monoids. J. Pure Appl. Algebra 48 (1987) 83-198. | Zbl
,[38] Some results on the dot-depth hierarchy. Semigroup Forum 46 (1993) 352-370. | Zbl
,Cité par Sources :