Given a finite set of matrices with integer entries, consider the question of determining whether the semigroup they generated 1) is free; 2) contains the identity matrix; 3) contains the null matrix or 4) is a group. Even for matrices of dimension , questions 1) and 3) are undecidable. For dimension , they are still open as far as we know. Here we prove that problems 2) and 4) are decidable by proving more generally that it is recursively decidable whether or not a given non singular matrix belongs to a given finitely generated semigroup.
@article{ITA_2005__39_1_125_0, author = {Choffrut, Christian and Karhum\"aki, Juhani}, title = {Some decision problems on integer matrices}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {125--131}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005007}, mrnumber = {2132582}, zbl = {1081.20066}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2005007/} }
TY - JOUR AU - Choffrut, Christian AU - Karhumäki, Juhani TI - Some decision problems on integer matrices JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 125 EP - 131 VL - 39 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2005007/ DO - 10.1051/ita:2005007 LA - en ID - ITA_2005__39_1_125_0 ER -
%0 Journal Article %A Choffrut, Christian %A Karhumäki, Juhani %T Some decision problems on integer matrices %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 125-131 %V 39 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2005007/ %R 10.1051/ita:2005007 %G en %F ITA_2005__39_1_125_0
Choffrut, Christian; Karhumäki, Juhani. Some decision problems on integer matrices. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 125-131. doi : 10.1051/ita:2005007. http://archive.numdam.org/articles/10.1051/ita:2005007/
[1] Transductions and context-free languages. B.G. Teubner (1979). | MR | Zbl
,[2] On the undecidability of freeness of matrix semigroups. Internat. J. Algebra Comput. 9 (1999) 295-305. | Zbl
, and ,[3] A remark on the representation of trace monoids. Semigroup Forum 40 (1990) 143-152. | Zbl
,[4] Unique decipherability for partially commutative alphabets. Fund. Inform. X (1987) 323-336. | Zbl
and ,[5] Automata, Languages and Machines, Vol. A. Academic Press (1974). | MR | Zbl
,[6] Decision questions on integer matrices. Lect. Notes Comp. Sci. 2295 (2002) 57-68. | Zbl
,[7] Morphisms, in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa. Springer-Verlag 1 (1997) 439-510. | Zbl
and ,[8] La finitude des représentations linéaires de semigroupes est décidable. J. Algebra 52 (1978) 437-459. | Zbl
,[9] Some opem problems in combinatorics of words and related areas, in Proc. of RIMS Symposium on Algebraic Systems, Formal Languages and Computation. RIMS Institute 1166 (2000) 118-130. | Zbl
,[10] On the undecidability of the freeness of integer matrix semigroups monoids. Internat. J. Algebra Comput. 1 (1991) 223-226. | Zbl
, and ,[11] Combinatorial Group Theory, of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag 89 (1977). | MR | Zbl
and ,[12] The use of 2 by 2 matrices in combinatorial group theory. Resultate der Mathematik 4 (1981) 171-192. | Zbl
,[13] On finite semigroups of matrices. Theoret. Comput. Sci. 5 (1978) 101-112. | Zbl
and ,[14] On certain insoluble problems concerning matrices (russian). Doklady Akad. Nauk SSSR (N.S.) 57 (1947) 539-542. | Zbl
,[15] Open problems in group theory: http://zebra.sci.ccny.edu/cgi-bin/LINK.CGI?/www/web/problems/oproblems.html
[16] Unsolvability in matrices. Stud. Appl. Math. 49 (1970) 105-107. | Zbl
,[17] An introduction to the Theory of Groups. Ally and Bacon Inc. (1965). | MR | Zbl
,Cité par Sources :