We prove that the pseudovariety of monoids of Krohn-Rhodes complexity at most is not finitely based for all . More specifically, for each pair of positive integers , we construct a monoid of complexity , all of whose -generated submonoids have complexity at most .
Mots clés : complexity, finite basis problem, the presentation lemma
@article{ITA_2005__39_1_279_0, author = {Rhodes, John and Steinberg, Benjamin}, title = {Krohn-Rhodes complexity pseudovarieties are not finitely based}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {279--296}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005016}, mrnumber = {2132592}, zbl = {1083.20050}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2005016/} }
TY - JOUR AU - Rhodes, John AU - Steinberg, Benjamin TI - Krohn-Rhodes complexity pseudovarieties are not finitely based JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 279 EP - 296 VL - 39 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2005016/ DO - 10.1051/ita:2005016 LA - en ID - ITA_2005__39_1_279_0 ER -
%0 Journal Article %A Rhodes, John %A Steinberg, Benjamin %T Krohn-Rhodes complexity pseudovarieties are not finitely based %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 279-296 %V 39 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2005016/ %R 10.1051/ita:2005016 %G en %F ITA_2005__39_1_279_0
Rhodes, John; Steinberg, Benjamin. Krohn-Rhodes complexity pseudovarieties are not finitely based. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 279-296. doi : 10.1051/ita:2005016. http://archive.numdam.org/articles/10.1051/ita:2005016/
[1] Finite Semigroups and Universal Algebra. World Scientific, Singapore (1994). | MR | Zbl
,[2] Hyperdecidable pseudovarieties and the calculation of semidirect products. Internat. J. Algebra Comput. 9 (1999) 241-261. | Zbl
,[3] Inevitable graphs: A proof of the Type II conjecture and some related decision procedures. Internat. J. Algebra Comput. 1 (1991) 127-146. | Zbl
,[4] Subsemigroups and complexity via the presentation lemma. J. Pure Appl. Algebra 101 (1995) 245-289. | Zbl
, , and ,[5] Automata, Languages and Machines. Academic Press, New York, Vol. A (1974); Vol. B (1976). | Zbl
,[6] On finite 0-simple semigroups and graph theory. Math. Syst. Theor. 2 (1968) 325-339. | Zbl
,[7] Idempotent pointlikes. Internat. J. Algebra Comput. (To appear). | MR | Zbl
,[8] Stable pairs. Internat. J. Algebra Comput. (Submitted). | Zbl
,[9] Ash's type II Theorem, profinite topology and Mal'cev products: Part I. Internat. J. Algebra Comput. 1 (1991) 411-436. | Zbl
, , and ,[10] Algebraic theory of machines, I: Prime decomposition theorem for finite semigroups and machines. Trans. Amer. Math. Soc. 116 (1965) 450-464. | Zbl
and ,[11] Complexity of finite semigroups. Ann. Math. 88 (1968) 128-160. | Zbl
and ,[12] Lectures on the algebraic theory of finite semigroups and finite-state machines Chapters 1, 5-9 (Chapter 6 with M.A. Arbib), in The Algebraic Theory of Machines, Languages, and Semigroups, edited by M.A. Arbib. Academic Press, New York (1968).
, and ,[13] Varieties of Formal Languages. Plenum, New York (1986). | MR | Zbl
,[14] The fundamental lemma of complexity for arbitrary finite semigroups. Bull. Amer. Math. Soc. 74 (1968) 1104-1109. | Zbl
,[15] Kernel systems - A global study of homomorphisms on finite semigroups. J. Algebra 49 (1977) 1-45. | Zbl
,[16] Infinite iteration of matrix semigroups. I. Structure theorem for torsion semigroups. J. Algebra 98 (1986) 422-451. | Zbl
,[17] Infinite iteration of matrix semigroups. II. Structure theorem for arbitrary semigroups up to aperiodic morphism. J. Algebra 100 (1986) 25-137. | Zbl
,[18] Complexity pseudovarieties are not local; type II subsemigroups can fall arbitrarily in complexity. Internat. J. Algebra Comput. (Submitted). | MR | Zbl
and ,[19] Lower bounds for complexity of finite semigroups. J. Pure Appl. Algebra 1 (1971) 79-95. | Zbl
and ,[20] Improved lower bounds for the complexity of finite semigroups. J. Pure Appl. Algebra 2 (1972) 13-71. | Zbl
and ,[21] A reduction theorem for complexity of finite semigroups. Semigroup Forum 10 (1975) 96-114. | Zbl
and ,[22] Local complexity of finite semigroups, in Algebra, Topology, and Category Theory (collection of papers in honor of Samuel Eilenberg). Academic Press, New York (1976) 149-168.
and ,[23] On the profinite topology on a free group. Bull. London Math. Soc. 25 (1993) 37-43. | Zbl
and ,[24] On an assertion of J. Rhodes and the finite basis and finite vertex rank problems for pseudovarieties. J. Pure Appl. Algebra 186 (2004) 91-107. | Zbl
,[25] On aperiodic relational morphisms. Semigroup Forum. (Accepted). | MR | Zbl
,[26] Decomposition and complexity of finite semigroups. Semigroup Forum 3 (1971) 189-250. | Zbl
,[27] Complexity of two--class semigroups. Adv. Math. 11 (1973) 215-237.
,[28] Depth decomposition theorem. Chapter XI in [5].
,[29] Complexity of semigroups and morphisms. Chapter XII in [5].
,[30] Presentation lemma... the short form. (Unpublished 1995).
,[31] Group-complexity and reversals of finite semigroups. Math. Syst. Theor. 8 (1974/75) 235-242. | Zbl
,Cité par Sources :