We investigate the complexity of several problems concerning Las Vegas finite automata. Our results are as follows. (1) The membership problem for Las Vegas finite automata is in NL. (2) The nonemptiness and inequivalence problems for Las Vegas finite automata are NL-complete. (3) Constructing for a given Las Vegas finite automaton a minimum state deterministic finite automaton is in NP. These results provide partial answers to some open problems posed by Hromkovič and Schnitger [Theoret. Comput. Sci. 262 (2001) 1-24)].
Mots-clés : Las Vegas finite automata, deterministic and nondeterministic finite automata, computational complexity
@article{ITA_2006__40_3_501_0, author = {Jir\'askov\'a, Galina}, title = {Note on the complexity of {Las} {Vegas} automata problems}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {501--510}, publisher = {EDP-Sciences}, volume = {40}, number = {3}, year = {2006}, doi = {10.1051/ita:2006033}, mrnumber = {2269207}, zbl = {1110.68051}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2006033/} }
TY - JOUR AU - Jirásková, Galina TI - Note on the complexity of Las Vegas automata problems JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 501 EP - 510 VL - 40 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2006033/ DO - 10.1051/ita:2006033 LA - en ID - ITA_2006__40_3_501_0 ER -
%0 Journal Article %A Jirásková, Galina %T Note on the complexity of Las Vegas automata problems %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 501-510 %V 40 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2006033/ %R 10.1051/ita:2006033 %G en %F ITA_2006__40_3_501_0
Jirásková, Galina. Note on the complexity of Las Vegas automata problems. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 3, pp. 501-510. doi : 10.1051/ita:2006033. http://archive.numdam.org/articles/10.1051/ita:2006033/
[1] The parallel complexity of finite-state automata problems. Inform. Comput. 97 (1992) 1-22. | Zbl
and ,[2] Lower bounds for Las Vegas automata by information theory. RAIRO-Inf. Theor. Appl. 37 (2003) 39-49. | Numdam | Zbl
and ,[3] An algorithm for minimizing the states in a finite automaton, in The Theory of Machines and Computations, edited by Z. Kohavi. Academic Press, New York (1971) 171-179.
,[4] On the power of Las Vegas for one-way communication complexity, OBDDs, and finite automata. Inform. Comput. 169 (2001) 284-296. | Zbl
and ,[5] On the power of Las Vegas II. Two-way finite automata. Theoret. Comput. Sci. 262 (2001) 1-24. | Zbl
and ,[6] On the equivalence, containment, and covering problems for the regular and context-free languages. J. Comput. Syst. Sci. 12 (1976) 222-268. | Zbl
, and ,[7] Nondeterministic space is closed under complement. SIAM J. Comput. 17 (1988) 935-938. | Zbl
,[8] A note on the space complexity of some decision problems for finite automata. Inform. Process. Lett. 40 (1991) 25-31. | Zbl
and ,[9] Minimal NFA problems are hard. SIAM J. Comput. 22 (1993) 1117-1141. | Zbl
and ,[10] Space-bounded reducibility among combinatorial problems. J. Comput. Syst. Sci. 11 (1975) 68-85. | Zbl
,[11] New problems complete for nondeterministic log space. Math. Syst. Theory 10 (1976) 1-17. | Zbl
, and ,[12] A comparison of two types of finite automata. Problemy Kibernetiki 9 (1963) 321-326 (in Russian).
,[13] Economy of description by automata, grammars and formal systems, in Proc. 12th Annual Symposium on Switching and Automata Theory (1971) 188-191.
and ,[14] On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. 20 (1971) 1211-1214. | Zbl
,[15] Introduction to the Theory of Computation. PWS Publishing Company, Boston (1997).
,[16] Word problems requiring exponential time, in Proc. 5th Annual ACM Symp. on the Theory of Computing (1973) 1-9. | Zbl
and ,[17] The method of forced enumeration for nondeterministic automata. Acta Inform. 29 (1988) 279-284. | Zbl
,[18] A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM J. Comput. 21 (1992) 216-227. | Zbl
,[19] On path equivalence of nondeterministic finite automata. Inform. Process. Lett. 58 (1996) 43-46. | Zbl
,Cité par Sources :