There exists a bijection between one-stack sortable permutations (permutations which avoid the pattern ) and rooted plane trees. We define an edit distance between permutations which is consistent with the standard edit distance between trees. This one-to-one correspondence yields a polynomial algorithm for the subpermutation problem for pattern-avoiding permutations. Moreover, we obtain the generating function of the edit distance between ordered unlabeled trees and some special ones. For the general case we show that the mean edit distance between a rooted plane tree and all other rooted plane trees is at least . Some results can be extended to labeled trees considering colored Dyck paths or, equivalently, colored one-stack sortable permutations.
Mots clés : edit distance, trees
@article{ITA_2006__40_4_593_0, author = {Micheli, Anne and Rossin, Dominique}, title = {Edit distance between unlabeled ordered trees}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {593--609}, publisher = {EDP-Sciences}, volume = {40}, number = {4}, year = {2006}, doi = {10.1051/ita:2006043}, mrnumber = {2277052}, zbl = {1114.05031}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2006043/} }
TY - JOUR AU - Micheli, Anne AU - Rossin, Dominique TI - Edit distance between unlabeled ordered trees JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 593 EP - 609 VL - 40 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2006043/ DO - 10.1051/ita:2006043 LA - en ID - ITA_2006__40_4_593_0 ER -
%0 Journal Article %A Micheli, Anne %A Rossin, Dominique %T Edit distance between unlabeled ordered trees %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 593-609 %V 40 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2006043/ %R 10.1051/ita:2006043 %G en %F ITA_2006__40_4_593_0
Micheli, Anne; Rossin, Dominique. Edit distance between unlabeled ordered trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 4, pp. 593-609. doi : 10.1051/ita:2006043. http://archive.numdam.org/articles/10.1051/ita:2006043/
[1] Pattern matching for permutations. Inf. Proc. Lett. 65 (1998) 277-283. | MR | Zbl
, and ,[2] Sorted and/or sortable permutations. Disc. Math. 225 (2000) 25-50. | MR | Zbl
,[3] Graph theory and Computing. Academic Press (1972) 15-22.
, and ,[4] Longest increasing subsequences in pattern-restricted permutations. Elect. J. Combin. 9 (2003) R12. | EuDML | MR | Zbl
, and ,[5] Correlating XML data streams using tree-edit distance embeddings, in Proc. PODS'03 (2003).
and ,[6] Computing the edit-distance between unrooted ordered trees, in ESA '98 (1998) 91-102. | MR | Zbl
,[7] The Art of Computer Programming: Fundamental Algorithms. Addison-Wesley (1973) 533. | MR
,[8] Combinatorial Analysis 1-2. Cambridge University Press (reprinted by Chelsea in 1960) 1915-1916.
,[9] Sur les treillis formés par les partitions d'un entier et leurs applications à la théorie des probabilités. C. R. Acad. Sci. Paris 240 (1955) 1188-1189. | MR | Zbl
,[10] A partial order and its application to probability theory. Sankhyā 21 (1959) 91-98. | Zbl
,[11] On the diagram of 132-avoiding permutations. Technical Report 0208006, Math. CO (2002). | MR | Zbl
,[12] Théorie combinatoire des t-fractions et approximants de Padé en deux points. Discrete Math. 153 (1996) 271-288. | Zbl
and ,[13] Permutations and restricted subsequences and Stack-sortable permutations. Ph.D. thesis, M.I.T., 1990.
,[14] Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Comput. 18 (1989) 1245-1262. | Zbl
and ,Cité par Sources :