In this paper we will deal with the balance properties of the infinite binary words associated to -integers when is a quadratic simple Pisot number. Those words are the fixed points of the morphisms of the type , for , , , where . We will prove that such word is -balanced with . Finally, in the case that it is known [B. Adamczewski, Theoret. Comput. Sci. 273 (2002) 197-224] that the fixed point of the substitution , is not -balanced for any . We exhibit an infinite sequence of pairs of words with the unbalance property.
Mots clés : balance property, substitution invariant, Parry number
@article{ITA_2007__41_2_123_0, author = {Turek, Ond\v{r}ej}, title = {Balance properties of the fixed point of the substitution associated to quadratic simple {Pisot} numbers}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {123--135}, publisher = {EDP-Sciences}, volume = {41}, number = {2}, year = {2007}, doi = {10.1051/ita:2007009}, mrnumber = {2350639}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2007009/} }
TY - JOUR AU - Turek, Ondřej TI - Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2007 SP - 123 EP - 135 VL - 41 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2007009/ DO - 10.1051/ita:2007009 LA - en ID - ITA_2007__41_2_123_0 ER -
%0 Journal Article %A Turek, Ondřej %T Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2007 %P 123-135 %V 41 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2007009/ %R 10.1051/ita:2007009 %G en %F ITA_2007__41_2_123_0
Turek, Ondřej. Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 2, pp. 123-135. doi : 10.1051/ita:2007009. http://archive.numdam.org/articles/10.1051/ita:2007009/
[1] Balances for fixed points of primitive substitutions. Theoret. Comput. Sci. 273 (2002) 197-224. | Zbl
,[2] Beta-expansions for cubic Pisot numbers, in LATIN'02, Springer. Lect. notes Comput. Sci. 2286 (2002) 141-152.
,[3] Balance properties of multi-dimensional words. Theoret. Comput. Sci. 60 (1938) 815-866. | Zbl
and ,[4] Sequences with minimal block growth. Math. Systems Theory 7 (1973) 138-153. | Zbl
and ,[5] Finite beta-expansions. Ergod. Theor. Dyn. Syst. 12 (1992) 713-723. | Zbl
and ,[6] Additive and multiplicative properties of point-sets based on beta-integers. Theoret. Comput. Sci. 303 (2003) 491-516. | Zbl
, and ,[7] Complexity of infinite words associated with beta-expansions. RAIRO-Inf. Theor. Appl. 38 (2004) 163-185. | Numdam | Zbl
, and ,[8] Algebraic combinatorics on words. Cambridge University Press (2002). | MR | Zbl
,[9] Symbolic dynamics. Amer. J. Math. 60 (1938) 815-866. | JFM
and ,[10] Symbolic dynamics II. Sturmian Trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM
and ,[11] Complexity and balances of the infinite word of -integers for , in Proc. of WORDS'03, Turku (2003) 138-148. | Zbl
,[12] Balanced words. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 787-805. | Zbl
,Cité par Sources :