Various static analyses of functional programming languages that permit infinite data structures make use of set constants like Top, Inf, and Bot, denoting all terms, all lists not eventually ending in Nil, and all non-terminating programs, respectively. We use a set language that permits union, constructors and recursive definition of set constants with a greatest fixpoint semantics in the set of all, also infinite, computable trees, where all term constructors are non-strict. This paper proves decidability, in particular DEXPTIME-completeness, of inclusion of co-inductively defined sets by using algorithms and results from tree automata and set constraints. The test for set inclusion is required by certain strictness analysis algorithms in lazy functional programming languages and could also be the basis for further set-based analyses.
Mots clés : functional programming languages, lambda calculus, strictness analysis, set constraints, tree automata
@article{ITA_2007__41_2_225_0, author = {Schmidt-Schauss, Manfred and Sabel, David and Sch\"utz, Marko}, title = {Deciding inclusion of set constants over infinite non-strict data structures}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {225--241}, publisher = {EDP-Sciences}, volume = {41}, number = {2}, year = {2007}, doi = {10.1051/ita:2007010}, mrnumber = {2350646}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2007010/} }
TY - JOUR AU - Schmidt-Schauss, Manfred AU - Sabel, David AU - Schütz, Marko TI - Deciding inclusion of set constants over infinite non-strict data structures JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2007 SP - 225 EP - 241 VL - 41 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2007010/ DO - 10.1051/ita:2007010 LA - en ID - ITA_2007__41_2_225_0 ER -
%0 Journal Article %A Schmidt-Schauss, Manfred %A Sabel, David %A Schütz, Marko %T Deciding inclusion of set constants over infinite non-strict data structures %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2007 %P 225-241 %V 41 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2007010/ %R 10.1051/ita:2007010 %G en %F ITA_2007__41_2_225_0
Schmidt-Schauss, Manfred; Sabel, David; Schütz, Marko. Deciding inclusion of set constants over infinite non-strict data structures. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 2, pp. 225-241. doi : 10.1051/ita:2007010. http://archive.numdam.org/articles/10.1051/ita:2007010/
[1] Abstract interpretation of declarative languages. Ellis Horwood, (1987).
and ,[2] Set constraints: Results, applications, and future directions, in Second Workshop on the Principles and Practice of Constraint Programming, Orcas Island, Washington, Springer-Verlag. Lect. Notes Comput. Sci. 874 (1994) 171-179.
,[3] The complexity of set constraints, in Proc. CSL 1993, Swansea, Wales (1993) 1-17. | Zbl
, , and ,[4] Cyclic lambda calculi, in TACS, Sendai, Japan (1997) 77-106. | Zbl
and ,[5] Lambda calculus with explicit recursion. Inform. Comput. 139 (1997) 154-233. | Zbl
and ,[6] Set constraints are the monadic class, in Proc. 8th Proc Symp. Logic in Computer Science, Swansea, Wales (1993) 75-83.
, and ,[7] Lazy Functional Languages: Abstract Interpretation and Compilation. Pitman, London, (1991). | MR | Zbl
,[8] The theory for strictness analysis for higher order functions, in Programs as Data Structures, edited by H. Ganzinger and N.D. Jones. Lect. Notes Comput. Sci. 217 (1985) 42-62. | Zbl
, and ,[9] Co-definite set constraints, in Proceedings of the 9th International Conference on Rewriting Techniques and Applications, edited by T. Nipkow, Springer-Verlag. Lect. Notes Comput. Sci. 1379 (1998) 211-225.
and ,[10] Safety of strictness analysis via term graph rewriting. In SAS 2000 (2000) 95-114. | Zbl
, , and ,[11] Tree automata techniques and applications. Available on: http://www.grappa.univ-lille3.fr/tata, 1997. release October, 1rst 2002.
, , , , , and .[12] Strictness, totality, and non-standard type inference. Theoret. Comput. Sci. 272 (2002) 69-112. | Zbl
, and ,[13] Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, in Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, ACM Press (1977) 252-252.
and ,[14] Introduction to Lattices and Order. Cambridge University Press, Cambridge, (1992). | MR | Zbl
and ,[15] Co-definite set constraints with membership expressions, in JICSLP'98: Proceedings of the 1998 joint international conference and symposium on Logic programming, Cambridge, MA, USA, MIT Press (1998) 25-39. | Zbl
, and ,[16]
, inference of polymorphic and conditional strictness properties, in Symposium on Principles of Programming Languages, San Diego, ACM Press. (1998) 209-221.[17] Haskell 98 Language and Libraries. Cambridge University Press (2003). www.haskell.org | MR
,[18] Tsun-Ming Kuo and P. Mishra, Strictness analysis: A new perspective based on type inference, in Functional Programming Languages and Computer Architecture, ACM Press, (1989) 260-272.
[19] Strictness and totality analysis. Sci. Comput. Programming 31 (1998) 113-145. | Zbl
, and ,[20] State in Haskell. Lisp Symbolic Comput. 8 (1995) 293-341.
and ,[21] Improving the representation of infinite trees to deal with sets of trees, in ESOP '00: Proceedings of the 9th European Symposium on Programming Languages and Systems. Lect. Notes Comput. Sci. 1782 (2000) 275-289. | Zbl
,[22] Erratic fudgets: A semantic theory for an embedded coordination language. Sci. Comput. Programming 46 (2003) 99-135. | Zbl
, and ,[23] Abstract Interpretation and Optimising Transformations for Applicative Programs. Ph.D. thesis, University of Edinburgh (1981).
,[24] Strictness analysis using abstract reduction. Technical Report 90-14, Department of Computer Science, University of Nijmegen (1990).
,[25] Strictness analysis by abstract reduction in orthogonal term rewriting systems. Technical Report 92-31, University of Nijmegen, Department of Computer Science (1992).
,[26] Strictness analysis using abstract reduction. In Functional Programming Languages and Computer Architecture, ACM Press, (1993) 255-265.
,[27] Higher order demand propagation. In Implementation of Functional Languages (IFL '98) London, edited by K. Hammond, A.J.T. Davie and C. Clack, Springer-Verlag. Lect. Notes Comput. Sci. 1595 (1998) 155-170.
,[28] Striktheitsanalysen funktionaler Sprachen. Ph.D. thesis, Fachbereich Mathematik und Informatik, Freie Universität Berlin, (2000). In German. | Zbl
,[29] Compiling laziness using projections, in Static Analysis Symposium, Aachen, Germany. Lect. Notes Comput. Sci. 1145 (1996) 255-269.
,[30] The concurrent Clean language report: Version 1.3 and 2.0. Technical report, Dept. of Computer Science, University of Nijmegen, 2003. http://www.cs.kun.nl/~clean/ | Zbl
and ,[31] Zbl
and , in Computer Science Logic, 18th International Workshop, CSL 2004, 13th Annual Conference of the EACSL, Karpacz, Poland, September 20-24, 2004, Proceedings, Set constraints on regular terms, edited by J. Marcinkowski and A. Tarlecki, Springer. Lect. Notes Comput. Sci. 3210 (2004) 458-472. |[32] Strictness analysis by abstract reduction using a tableau calculus, in Proc. of the Static Analysis Symposium. Lect. Notes Comput. Sci. 983 (1995) 348-365.
, and ,[33] On the safety of Nöcker's strictness analysis. Technical Report Frank-19, Institut für Informatik. J.W. Goethe-University (2004).
, and ,[34] A complete proof of the safety of Nöcker's strictness analysis. Technical Report Frank-20, Institut für Informatik. J.W. Goethe-University, (2005).
, and ,[35] Analysing demand in nonstrict functional programming languages. Dissertation, J.W.Goethe-Universität Frankfurt, 2000. Available at http://www.ki.informatik.uni-frankfurt.de/papers/marko
,[36] Deciding equivalence of finite tree automata. SIAM J. Comput. 19 (1990) 424-437. | Zbl
,[37] Automata on infinite objects. In Handbook of Theoretical Computer Science, Formal Models and Semantics (B), edited by J. van Leeuwen, Elsevier (1990) 133-192. | Zbl
,[38] Strictness analysis on non-flat domains (by abstract interpretation over finite domains). In Abstract Interpretation of Declarative Languages, Chap. 12. Edited by S. Abramsky and C. Hankin, Ellis Horwood Limited, Chichester (1987).
,[39] Projections for strictness analysis. In Functional Programming Languages and Computer Architecture. Lect. Notes Comput. Sci. 274 (1987) 385-407. | Zbl
and ,Cité par Sources :