Object oriented institutions to specify symbolic computation systems
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 2, pp. 191-214.

The specification of the data structures used in EAT, a software system for symbolic computation in algebraic topology, is based on an operation that defines a link among different specification frameworks like hidden algebras and coalgebras. In this paper, this operation is extended using the notion of institution, giving rise to three institution encodings. These morphisms define a commutative diagram which shows three possible views of the same construction, placing it in an equational algebraic institution, in a hidden institution or in a coalgebraic institution. Moreover, these morphisms can be used to obtain a new description of the final objects of the categories of algebras in these frameworks, which are suitable abstract models for the EAT data structures. Thus, our main contribution is a formalization allowing us to encode a family of data structures by means of a single algebra (which can be described as a coproduct on the image of the institution morphisms). With this aim, new particular definitions of hidden and coalgebraic institutions are presented.

DOI : https://doi.org/10.1051/ita:2007015
Classification : 68Q65,  68Q60
Mots clés : institution, symbolic computation, specification, object orientation
@article{ITA_2007__41_2_191_0,
     author = {Dom{\'\i}nguez, C\'esar and Lamb\'an, Laureano and Rubio, Julio},
     title = {Object oriented institutions to specify symbolic computation systems},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {191--214},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {2},
     year = {2007},
     doi = {10.1051/ita:2007015},
     mrnumber = {2350644},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ita:2007015/}
}
Domínguez, César; Lambán, Laureano; Rubio, Julio. Object oriented institutions to specify symbolic computation systems. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 2, pp. 191-214. doi : 10.1051/ita:2007015. http://archive.numdam.org/articles/10.1051/ita:2007015/

[1] M. Barr and Ch. Wells, Category Theory for Computer Science. Prentice Hall International (1995). | Zbl 0714.18001

[2] M. Bidoit and R. Hennicker, Constructor-based observational logic. Technical Report LSV-03-9, Lab. Specification et Verification, ENS de Cachan, Cachan, France (2003).

[3] R.M. Burstall, R. Diaconescu, Hiding and behaviour: an institutional approach, in A Classical Mind: Essays in Honour of C.A.R. Hoare, edited by A. William Roscoe. Prentice-Hall, Englewood Cliffs, NJ (1994) 75-92.

[4] J. Calmet and I.A. Tjandra, A unified-algebra-based specification language for symbolic computing, in Design and Implementation of Symbolic Computation Systems (DISCO'93), edited by A. Miola, Springer, Berlin. Lect. Notes Comput. Sci. 722 (1993) 122-133.

[5] J. Calmet, K. Homann and I.A. Tjandra, Unified domains and abstract computational structures, in Artificial Intelligence and Symbolic Mathematical Computation (AISMC'92), edited by J. Calmet and J.A. Campbell, Springer, Berlin. Lect. Notes Comput. Sci. 737 (1993) 166-177. | MR 1291204 | Zbl 0925.68246

[6] C. Cîrstea, Coalgebra semantics for hidden algebra: parameterised objects and inheritance, in Recent Trends in Algebraic Development Techniques, edited by F. Parisi-Presicce, Springer, Berlin. Lect. Notes Comput. Sci. 1376 (1998) 174-189. | MR 1656750 | Zbl 0906.68094

[7] C. Cîrstea, A coalgebraic equational approach to specifying observational structures. Theoret. Comput. Sci. 280 (2002) 35-68. | MR 1904980 | Zbl 1002.68095

[8] A. Corradini, A completeness result for equational deduction in coalgebraic specification, in Recent Trends in Algebraic Development Techniques, edited by F. Parisi-Presicce, Springer, Berlin. Lect. Notes Comput. Sci. 1376 (1998) 190-205. | MR 1656751 | Zbl 0903.08007

[9] C. Domínguez, J. Rubio, Modeling inheritance as coercion in a symbolic computation system, in International Symposium on Symbolic and Algebraic Computation (ISSAC'2001), edited by B. Mourrain, ACM Press (2001) 107-115. | Zbl 1356.68276

[10] C. Domínguez, L. Lambán, V. Pascual and J. Rubio, Hidden specification of a functional system, in Computer Aided Systems Theory (EUROCAST'2001), edited by R. Moreno-Díaz, B. Buchberger, J.L. Freire, Springer, Berlin. Lect. Notes Comput. Sci. 2178 (2001) 555-569. | Zbl 1023.68129

[11] X. Dousson, F. Sergeraert and Y. Siret, The Kenzo program, Institut Fourier, Grenoble, (1999), Available at http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo

[12] D. Duval, Diagrammatic Specifications. Math. Structures Comput. Sci. 13 (2003) 857-890. | Zbl 1089.68063

[13] J.A. Goguen and R.M. Burstall, Institutions: Abstract model theory for specification and programming. J. ACM 39 (1992) 95-146. | Zbl 0799.68134

[14] J.A. Goguen and R. Diaconescu, Towards an algebraic semantics for the object paradigm, in Recent Trends in Data Type Specification, edited by H. Ehrig and F. Orejas Springer, Berlin. Lect. Notes Comput. Sci. 785 (1994) 1-29. | Zbl 0941.68637

[15] J.A. Goguen and G. Malcolm, A hidden agenda. Theoret. Comput. Sci. 245 (2000) 55-101. | Zbl 0946.68070

[16] J.A. Goguen, G. Roşu, Hiding more of hidden algebra, in Formal Methods (FM'99), edited by J.M. Wing, J. Woodcook, J. Davies, Springer, Berlin. Lect. Notes Comput. Sci. 1709, (1999) 1704-1719. | Zbl 0953.68094

[17] J.A. Goguen and G. Roşu, Institution morphisms. Form. Asp. Comput. 13 (2002) 274-307. | Zbl 1001.68019

[18] J.A. Goguen, G. Malcolm and T. Kemp, A hidden herbrand theorem: combining the object and logic paradigms. J. Log. Algebr. Program. 51 (2002) 1-41. | Zbl 1012.03041

[19] R. Hennicker and M. Bidoit, Observational logic, in Algebraic Methodology and Software Technology (AMAST'98), edited by A.M. Haeberer, Springer, Berlin. Lect. Notes Comput. Sci. 1584 (1999) 263-277.

[20] A. Kurz and R. Hennicker, On institutions for modular coalgebraic specifications. Theoret. Comput. Sci. 280 (2002) 69-103. | Zbl 1052.68089

[21] L. Lambán, V. Pascual and J. Rubio, Specifying implementations, in International Symposium on Symbolic and Algebraic Computation (ISSAC'99), edited by S. Dooley. ACM Press, (1999) 245-251.

[22] L. Lambán, V. Pascual and J. Rubio, An object-oriented interpretation of the EAT system, Applicable Algebra in Engineering, Comm. Comput. 14 (2003) 187-215. | Zbl 1046.68140

[23] J. Loeckx, H.D. Ehrich and M. Wolf, Specification of Abstract Data Types. Wiley and Teubner, New York (1996). | MR 1440856 | Zbl 0868.68077

[24] J. Rubio, F. Sergeraert, Constructive algebraic topology. Bull. Sci. Math. 126 (2002) 389-412. | Zbl 1007.55019

[25] J. Rubio, F. Sergeraert and Y. Siret, EAT: Symbolic Software for Effective Homology Computation, Institut Fourier, Grenoble, 1997. Available at ftp://fourier.ujf-grenoble.fr/pub/EAT

[26] J. Rubio, F. Sergeraert and Y. Siret, Overview of EAT, a System for Effective Homology Computation. The SAC Newsletter 3 (1998) 69-79.

[27] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249 (2000) 3-80. | Zbl 0951.68038

[28] A. Tarlecki, Towards heterogeneous specifications, in Frontiers of Combinig Systems (FroCos'98), Research Studies Press/Wiley, edited by D.M. Gabbay, M. de Rijke. Stud. Logic Comput. 7 (2000) 337-360. | Zbl 0988.03056