For finitary set functors preserving inverse images, recursive coalgebras of Paul Taylor are proved to be precisely those for which the system described by always halts in finitely many steps.
Mots-clés : recursive coalgebra, coalgebra, definition by recursivity
@article{ITA_2007__41_4_447_0, author = {Ad\'amek, Ji\v{r}{\'\i} and L\"ucke, Dominik and Milius, Stefan}, title = {Recursive coalgebras of finitary functors}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {447--462}, publisher = {EDP-Sciences}, volume = {41}, number = {4}, year = {2007}, doi = {10.1051/ita:2007028}, mrnumber = {2377973}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2007028/} }
TY - JOUR AU - Adámek, Jiří AU - Lücke, Dominik AU - Milius, Stefan TI - Recursive coalgebras of finitary functors JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2007 SP - 447 EP - 462 VL - 41 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2007028/ DO - 10.1051/ita:2007028 LA - en ID - ITA_2007__41_4_447_0 ER -
%0 Journal Article %A Adámek, Jiří %A Lücke, Dominik %A Milius, Stefan %T Recursive coalgebras of finitary functors %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2007 %P 447-462 %V 41 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2007028/ %R 10.1051/ita:2007028 %G en %F ITA_2007__41_4_447_0
Adámek, Jiří; Lücke, Dominik; Milius, Stefan. Recursive coalgebras of finitary functors. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 4, pp. 447-462. doi : 10.1051/ita:2007028. http://archive.numdam.org/articles/10.1051/ita:2007028/
[1] A Final Coalgebra Theorem, Proceedings Category Theory and Computer Science, edited by D.H. Pitt et al. Lect. Notes Comput. Sci. (1989) 357-365.
and ,[2] Terminal coalgebras and free iterative theories. Inform. Comput. 204 (2006) 1139-1172. | Zbl
and ,[3] Automata and Algebras in Categories. Kluwer Academic Publishers (1990). | MR | Zbl
and ,[4] Recursive coalgebras of finitary functors, in CALCO-jnr 2005 CALCO Young Researchers Workshop Selected Papers, edited by P. Mosses, J. Power and M. Seisenberger, Report Series, University of Swansea, 1-14.
, and ,[5] Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114 (1993) 299-315. | Zbl
,[6] Recursive coalgebras from comonads. Inform. Comput. 204 (2006) 437-468. | Zbl
, and ,[7] Set functors. Comment. Math. Univ. Carolin. 12 (1971) 175-195. | Zbl
,[8] A fixpoint theorem for complete categories. Math. Z. 103 (1968) 151-161. | Zbl
,[9] Completely iterative algebras and completely iterative monads. Inform. Comput. 196 (2005) 1-41. | Zbl
,[10] Well-founded relations; generalizations of principles of induction and recursion (abstract). Bull. Amer. Math. Soc. 61 (1955) 442.
,[11] Categorical set theory: a characterization of the category of sets. J. Pure Appl. Algebra 4 (1974) 79-119. | Zbl
,[12] Universal coalgebra, a theory of systems. Theoret. Comput. Sci. 249 (2000) 3-80. | Zbl
,[13] Practical Foundations of Mathematics. Cambridge University Press (1999). | MR | Zbl
,[14] On a descriptive classification of set-functors I. Comment. Math. Univ. Carolin. 12 (1971) 143-174. | EuDML | Zbl
,Cité par Sources :