This paper is a contribution to the general tiling problem for the hyperbolic plane. It is an intermediary result between the result obtained by R. Robinson [Invent. Math. 44 (1978) 259-264] and the conjecture that the problem is undecidable.
Mots clés : tilings, tiling problem, hyperbolic plane, origin-constrained problem
@article{ITA_2008__42_1_21_0, author = {Margenstern, Maurice}, title = {About the domino problem in the hyperbolic plane from an algorithmic point of view}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {21--36}, publisher = {EDP-Sciences}, volume = {42}, number = {1}, year = {2008}, doi = {10.1051/ita:2007045}, mrnumber = {2382542}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2007045/} }
TY - JOUR AU - Margenstern, Maurice TI - About the domino problem in the hyperbolic plane from an algorithmic point of view JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 21 EP - 36 VL - 42 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2007045/ DO - 10.1051/ita:2007045 LA - en ID - ITA_2008__42_1_21_0 ER -
%0 Journal Article %A Margenstern, Maurice %T About the domino problem in the hyperbolic plane from an algorithmic point of view %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 21-36 %V 42 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2007045/ %R 10.1051/ita:2007045 %G en %F ITA_2008__42_1_21_0
Margenstern, Maurice. About the domino problem in the hyperbolic plane from an algorithmic point of view. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 1, pp. 21-36. doi : 10.1051/ita:2007045. http://archive.numdam.org/articles/10.1051/ita:2007045/
[1] The undecidability of the domino problem. Mem. Amer. Math. Soc. 66 (1966) 1-72. | MR | Zbl
,[2] A strongly aperiodic set of tiles in the hyperbolic plane. Invent. Math. 159 (2005) 119-132. | MR | Zbl
,[3] New tools for cellular automata of the hyperbolic plane. J. Univ. Comput. Sci. 6 (2000) 1226-1252. | MR | Zbl
,[4] About the domino problem in the hyperbolic plane from an algorithmic point of view2006), available at: http://www.lita.sciences.univ-metz.fr/~margens/hyp_dominoes.ps.gzip
,[5] Fibonacci numbers and words in tilings of the hyperbolic plane. TUCS Gen. Publ. 43 (2007) 36-41.
,[6] About the domino problem in the hyperbolic plane, a new solution, arXiv:cs.CG/0701096 (2007). | MR
,[7] The domino problem of the hyperbolic plane is undecidable, arXiv:0706.4161 (2007). | MR | Zbl
,[8] Cellular Automata in Hyperbolic Spaces, Volume 1, Theory. OCP, Philadelphia (2007). | Zbl
,[9] Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12 (1971) 177-209. | MR | Zbl
,[10] Undecidable tiling problems in the hyperbolic plane. Invent. Math. 44 (1978) 259-264. | MR | Zbl
,[11] Proving theorems by pattern recognition. Bell System Tech. J. 40 (1961) 1-41.
,Cité par Sources :