We compare two sets of (infinite) binary sequences whose suffixes satisfy extremal conditions: one occurs when studying iterations of unimodal continuous maps from the unit interval into itself, but it also characterizes univoque real numbers; the other is a disguised version of the set of characteristic sturmian sequences. As a corollary to our study we obtain that a real number in is univoque and self-sturmian if and only if the -expansion of is of the form , where is a characteristic sturmian sequence beginning itself in .
Mots clés : sturmian sequences, univoque numbers, self-sturmian numbers
@article{ITA_2008__42_4_659_0, author = {Allouche, Jean-Paul}, title = {A note on univoque self-sturmian numbers}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {659--662}, publisher = {EDP-Sciences}, volume = {42}, number = {4}, year = {2008}, doi = {10.1051/ita:2007058}, mrnumber = {2458699}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2007058/} }
TY - JOUR AU - Allouche, Jean-Paul TI - A note on univoque self-sturmian numbers JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 659 EP - 662 VL - 42 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2007058/ DO - 10.1051/ita:2007058 LA - en ID - ITA_2008__42_4_659_0 ER -
%0 Journal Article %A Allouche, Jean-Paul %T A note on univoque self-sturmian numbers %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 659-662 %V 42 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2007058/ %R 10.1051/ita:2007058 %G en %F ITA_2008__42_4_659_0
Allouche, Jean-Paul. A note on univoque self-sturmian numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 4, pp. 659-662. doi : 10.1051/ita:2007058. http://archive.numdam.org/articles/10.1051/ita:2007058/
[1] Théorie des nombres et automates. Thèse d'État, Université Bordeaux I (1983).
,[2] Itérations de fonctions unimodales et suites engendrées par automates. C. R. Acad. Sci. Paris Sér. I 296 (1983) 159-162. | MR | Zbl
and ,[3] The Komornik-Loreti constant is transcendental. Amer. Math. Monthly 107 (2000) 448-449. | MR | Zbl
and ,[4] Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set. Acta Math. Hungar. 91 (2001) 325-332. | MR | Zbl
and ,[5] On univoque Pisot numbers. Math. Comput. 76 (2007) 1639-1660. | MR
, and ,[6] Extremal properties of (epi)sturmian sequences and distribution modulo , Preprint (2007).
and ,[7] Fractional parts of powers and Sturmian words. C. R. Math. Acad. Sci. Paris 341 (2005) 69-74. | MR | Zbl
and ,[8] Ordered orbits of the shift, square roots, and the devil's staircase. Math. Proc. Cambridge 115 (1994) 451-481. | MR | Zbl
and ,[9] Sturmian words, -shifts, and transcendence. Theor. Comput. Sci. 321 (2004) 395-404. | MR | Zbl
and ,[10] Étude de la classification topologique des fonctions unimodales. Ann. Inst. Fourier 35 (1985) 59-77. | Numdam | MR | Zbl
,[11] Characterization of the unique expansions and related problems. Bull. Soc. Math. France 118 (1990) 377-390. | Numdam | MR | Zbl
, and ,[12] Unique developments in non-integer bases. Amer. Math. Monthly 105 (1998) 636-639. | MR | Zbl
and ,[13] Algebraic Combinatorics On Words, Encyclopedia of Mathematics and its Applications, Vol. 90. Cambridge University Press (2002). | MR | Zbl
,[14] Inequalities characterizing standard Sturmian words. Pure Math. Appl. 14 (2003) 141-144. | MR | Zbl
,[15] Symbolic dynamics and rotation numbers. Physica A 134 (1986) 543-576. | MR | Zbl
,[16] Symbolic dynamics of order-preserving orbits. Physica D 29 (1987) 191-201. | MR | Zbl
,Cité par Sources :