The (Look and Say) derivative of a word is obtained by writing the number of consecutive equal letters when the word is spelled from left to right. For example, (two , one , two ). We start the study of the behaviour of binary words generated by morphisms under the operator, focusing in particular on the Fibonacci word.
Mots-clés : look and say sequence, Conway, binary words, Fibonacci word, morphisms, Lyndon factorization
@article{ITA_2008__42_4_729_0, author = {S\'e\'ebold, Patrice}, title = {Look and {Say} {Fibonacci}}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {729--746}, publisher = {EDP-Sciences}, volume = {42}, number = {4}, year = {2008}, doi = {10.1051/ita:2007060}, mrnumber = {2458704}, zbl = {1155.68071}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2007060/} }
TY - JOUR AU - Séébold, Patrice TI - Look and Say Fibonacci JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 729 EP - 746 VL - 42 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2007060/ DO - 10.1051/ita:2007060 LA - en ID - ITA_2008__42_4_729_0 ER -
%0 Journal Article %A Séébold, Patrice %T Look and Say Fibonacci %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 729-746 %V 42 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2007060/ %R 10.1051/ita:2007060 %G en %F ITA_2008__42_4_729_0
Séébold, Patrice. Look and Say Fibonacci. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 4, pp. 729-746. doi : 10.1051/ita:2007060. http://archive.numdam.org/articles/10.1051/ita:2007060/
[1] Automatic sequences: theory, applications, generalizations. Cambridge University Press (2003). | MR | Zbl
and ,[2] Démonstration de l'existence de suites asymétriques infinies. Mat. Sb. 44 (1937) 769-777 (in Russian), 777-779 (French summary). | JFM | Zbl
,[3] Mots sans carré et morphismes itérés. Discrete Math. 29 (1980). 235-244. | MR | Zbl
,[4] Fibonacci words - a survey1986) 13-27. | Zbl
,[5] A characterization of Sturmian morphisms, MFCS'93, Gdansk (Poland). Lect. Notes Comput. Sci. 711 (1993) 281-290. | MR | Zbl
and ,[6] A remark on morphic Sturmian words. RAIRO-Theor. Inf. Appl. 28 (1994) 255-263. | Numdam | MR | Zbl
and ,[7] Combinatorial properties of smooth infinite words. Theor. Comput. Sci. 352 (2006) 306-317. | MR | Zbl
, , and ,[8] Uniform tag sequences. Math. Syst. Theory 6 (1972) 164-192. | MR | Zbl
,[9] The weird and wonderful chemistry of audioactive decay, in Open problems in communication and computation, edited by T.M. Cover, B. Gopinath. Springer-Verlag, New-York (1987) 173-188. See also Eureka 46 (1986) 5-18. | MR
,[10] À propos d'une itération sur chaînes de caractères numériques. Laboratoire d'Analyse Numérique et d'Optimisation. Université Lille 1, Research Report ANO 293 (1993).
,[11] Chaînes alphanumériques ; cycles et points fixes. Laboratoire d'Analyse Numérique et d'Optimisation. Université Lille 1, Research Report ANO 301 (1993).
,[12] Mots autodescriptifs et co-descriptifs. Laboratoire d'Analyse Numérique et d'Optimisation. Université Lille 1, Research Report ANO 332 (1994).
,[13] Combinatorics on Words, Encyclopedia of Mathematics and Applications, Vol. 17. Addison-Wesley, Reading, Mass. (1983). Reprinted in the Cambridge Mathematical Library, Cambridge University Press (1997). | MR | Zbl
,[14] Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Vol. 90. Cambridge University Press (2002). | MR | Zbl
,[15] Lyndon factorization of sturmian words. Discrete Math. 210 (2000) 137-149. | MR | Zbl
,[16] Hiérarchie et fermeture de certaines classes de tag-systèmes. Acta Informatica 20 (1983) 179-196. | MR | Zbl
,[17] On morphisms preserving infinite Lyndon words. Discrete Math. Theor. Comput. Sci. 9 (2007) 89-108. | MR | Zbl
,[18] Handbook of Formal Languages, Vol. 1, edited by G. Rozenberg, A. Salomaa. Springer (1997). | MR | Zbl
[19] On the conjugation of standard morphisms. Theor. Comput. Sci. 195 (1998) 91-109. | MR | Zbl
,[20] About some overlap-free morphisms on a -letter alphabet. J. Autom. Lang. Comb. 7 (2002) 579-597. | MR | Zbl
,[21] Infinite Lyndon words. Inform. Process Lett. 50 (1994) 101-104. | MR | Zbl
, , and ,Cité par Sources :