Let be a language. A balanced pair consists of two words and in which have the same number of occurrences of each letter. It is irreducible if the pairs of strict prefixes of and of the same length do not form balanced pairs. In this article, we are interested in computing the set of irreducible balanced pairs on several cases of languages. We make connections with the balanced pairs algorithm and discrete geometrical constructions related to substitutive languages. We characterize substitutive languages which have infinitely many irreducible balanced pairs of a given form.
Mots-clés : substitutive languages, balanced pairs, algorithm on words
@article{ITA_2008__42_4_663_0, author = {Bernat, Julien}, title = {Study of irreducible balanced pairs for substitutive languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {663--678}, publisher = {EDP-Sciences}, volume = {42}, number = {4}, year = {2008}, doi = {10.1051/ita:2007062}, mrnumber = {2458700}, zbl = {1155.68060}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2007062/} }
TY - JOUR AU - Bernat, Julien TI - Study of irreducible balanced pairs for substitutive languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 663 EP - 678 VL - 42 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2007062/ DO - 10.1051/ita:2007062 LA - en ID - ITA_2008__42_4_663_0 ER -
%0 Journal Article %A Bernat, Julien %T Study of irreducible balanced pairs for substitutive languages %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 663-678 %V 42 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2007062/ %R 10.1051/ita:2007062 %G en %F ITA_2008__42_4_663_0
Bernat, Julien. Study of irreducible balanced pairs for substitutive languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 4, pp. 663-678. doi : 10.1051/ita:2007062. http://archive.numdam.org/articles/10.1051/ita:2007062/
[1] Balances for fixed points of primitive substitutions. Theoret. Comput. Sci. 307 (2003) 47-75. | MR | Zbl
,[2] Palindromic complexity of infinite words associated with simple Parry numbers. Ann. Inst. Fourier (Grenoble) 56 (2006) 2131-2160. | Numdam | MR | Zbl
, , and ,[3] Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8 (2001) 181-207. | MR | Zbl
and ,[4] Représentation géométrique de suites de complexité . Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | MR | Zbl
and ,[5] Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions, in Discrete models: combinatorics, computation, and geometry (Paris, 2001). Discrete Math. Theor. Comput. Sci. Proc., AA, pp. 059-078 (electronic). Maison Inform. Math. Discrèt. (MIMD), Paris (2001). | MR | Zbl
, , and ,[6] Discrete planes, -actions, Jacobi-Perron algorithm and substitutions. Ann. Inst. Fourier (Grenoble) 52 (2002) 305-349. | Numdam | MR | Zbl
, and ,[7] Proximality in Pisot Tiling Spaces. Fund. Math. 194 (2007) 191-238. | MR | Zbl
and ,[8] Geometric theory of unimodular Pisot substitutions. Amer. J. Math. 128 (2006) 1219-1282. | MR | Zbl
and ,[9] Symmetrized -integers (2006) Submitted. | Zbl
,[10] On super-coincidence condition of substitutions (2006) Preprint.
, and ,[11] Fibonacci words - a survey, in The Book of L, pp. 13-27. Springer-Verlag (1986). | Zbl
,[12] Lattices and multi-dimensional words. Theoret. Comput. Sci. 319 (2004) 177-202. | MR | Zbl
and ,[13] Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc. 353 (2001) 5121-5144. | MR | Zbl
and ,[14] Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier (Grenoble) 50 (2000) 1265-1276. | Numdam | MR | Zbl
, and ,[15] A combinatorial property of the Fibonacci words. Inform. Process. Lett. 12 (1981) 193-195. | MR | Zbl
,[16] Palindromes in the Fibonacci word. Inform. Process. Lett. 55 (1995) 217-221. | MR | Zbl
,[17] Epi-Sturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255 (2001) 539-553. | MR | Zbl
, and ,[18] A characterization of substitutive sequences using return words. Discrete Math. 179 (1998) 89-101. | MR | Zbl
,[19] Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergod. Theor. Dyn. Syst. 19 (1999) 953-993. | MR | Zbl
, and ,[20] Dépendance de systèmes de numération associés à des puissances d'un nombre de Pisot. Theoret. Comput. Sci. 158 (1996) 65-79. | MR | Zbl
,[21] Confluent linear numeration systems. Theoret. Comput. Sci. 106 (1992) 183-219. | MR | Zbl
,[22] Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable. Ergod. Theor. Dyn. Syst. 6 (1986) 529-540. | MR | Zbl
,[23] Atomic surfaces, tilings and coincidences I. Irreducible case. Israel J. Math. 153 (2006) 129-155. | MR | Zbl
and ,[24] On a characteristic property of Arnoux-Rauzy sequences. RAIRO-Theor. Inf. Appl. 36 (2002) 385-388. | Numdam | MR | Zbl
and ,[25] Some examples of adic transformations and automorphisms of substitutions. Selecta Math. Soviet. 11 (1992) 83-104. Selected translations. | MR | Zbl
,[26] Algebraic Combinatorics On Words. Cambridge University Press (2002). | MR | Zbl
,[27] Generalized balanced pair algorithm. Topology Proc. 28 (2004) 163-178. | MR | Zbl
,[28] On the -expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. | MR | Zbl
,[29] Substitutions in Dynamics, Arithmetics and Combinatoric, edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. Lecture Notes in Mathematics 1794 (2002). | MR | Zbl
,[30] Substitution dynamical systems-spectral analysis. Lecture Notes in Mathematics 1294 (1987). | MR | Zbl
,[31] A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith. 95 (2000) 167-184. | MR | Zbl
and ,[32] Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | MR | Zbl
,[33] The Tribonacci substitution. INTEGERS Electronic Journal of Combinatorial Number Theory 3 (2005) 1553-1732. | MR | Zbl
and ,[34] Pure discrete spectrum for one-dimensional substitution systems of Pisot type. Canad. Math. Bull. 45 (2002) 697-710. | MR | Zbl
and ,[35] Self-affine tiling via substitution dynamical systems and Rauzy fractals. Pacific J. Math. 206 (2002) 465-485. | MR | Zbl
and ,[36] Groups, tilings and finite state automata. Summer 1989 AMS Colloquium Lectures (1989).
,[37] Balanced words. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) S787-S805. | MR | Zbl
,Cité par Sources :