A set is a Parikh test set of if is a test set of . We give a characterization of Parikh test sets for arbitrary language in terms of its Parikh basis, and the coincidence graph of letters.
Mots-clés : combinatorics on words, test sets, commutative languages
@article{ITA_2008__42_3_525_0, author = {Holub, \v{S}t\v{e}p\'an}, title = {Parikh test sets for commutative languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {525--537}, publisher = {EDP-Sciences}, volume = {42}, number = {3}, year = {2008}, doi = {10.1051/ita:2008011}, mrnumber = {2434033}, zbl = {1149.68068}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2008011/} }
TY - JOUR AU - Holub, Štěpán TI - Parikh test sets for commutative languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 525 EP - 537 VL - 42 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2008011/ DO - 10.1051/ita:2008011 LA - en ID - ITA_2008__42_3_525_0 ER -
%0 Journal Article %A Holub, Štěpán %T Parikh test sets for commutative languages %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 525-537 %V 42 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2008011/ %R 10.1051/ita:2008011 %G en %F ITA_2008__42_3_525_0
Holub, Štěpán. Parikh test sets for commutative languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 3, pp. 525-537. doi : 10.1051/ita:2008011. http://archive.numdam.org/articles/10.1051/ita:2008011/
[1] Polynomial size test sets for commutative languages. RAIRO-Theor. Inf. Appl. 31 (1997) 291-304. | Numdam | MR | Zbl
and ,[2] Linear size test sets for certain commutative languages. RAIRO-Theor. Inf. Appl. 35 (2001) 453-475. | Numdam | MR | Zbl
and ,[3] Rational cones and commutations. In Machines, languages, and complexity (Smolenice, 1988). Lect. Notes Comput. Sci. 381 (1989) 37-54. | MR
,Cité par Sources :