It is studied how taking the inverse image by a sliding block code affects the syntactic semigroup of a sofic subshift. The main tool are -semigroups, considered as recognition structures for sofic subshifts. A new algebraic invariant is obtained for weak equivalence of sofic subshifts, by determining which classes of sofic subshifts naturally defined by pseudovarieties of finite semigroups are closed under weak equivalence. Among such classes are the classes of almost finite type subshifts and aperiodic subshifts. The algebraic invariant is compared with other robust conjugacy invariants.
Mots clés : sofic subshift, conjugacy, weak equivalence, $\zeta $-semigroup, pseudovariety
@article{ITA_2008__42_3_481_0, author = {Chaubard, Laura and Costa, Alfredo}, title = {A new algebraic invariant for weak equivalence of sofic subshifts}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {481--502}, publisher = {EDP-Sciences}, volume = {42}, number = {3}, year = {2008}, doi = {10.1051/ita:2008015}, mrnumber = {2434031}, zbl = {1155.37009}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2008015/} }
TY - JOUR AU - Chaubard, Laura AU - Costa, Alfredo TI - A new algebraic invariant for weak equivalence of sofic subshifts JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 481 EP - 502 VL - 42 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2008015/ DO - 10.1051/ita:2008015 LA - en ID - ITA_2008__42_3_481_0 ER -
%0 Journal Article %A Chaubard, Laura %A Costa, Alfredo %T A new algebraic invariant for weak equivalence of sofic subshifts %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 481-502 %V 42 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2008015/ %R 10.1051/ita:2008015 %G en %F ITA_2008__42_3_481_0
Chaubard, Laura; Costa, Alfredo. A new algebraic invariant for weak equivalence of sofic subshifts. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 3, pp. 481-502. doi : 10.1051/ita:2008015. http://archive.numdam.org/articles/10.1051/ita:2008015/
[1] Finite semigroups and universal algebra, World Scientific, Singapore (1995), English translation. | MR | Zbl
,[2] A hierarchy of shift equivalent sofic shifts. Theoret. Comput. Sci. 345 (2005) 190-205. | MR | Zbl
, , and ,[3] The syntactic graph of a sofic shift is invariant under shift equivalence. Int. J. Algebra Comput. 16 (2006), 443-460. | MR | Zbl
, , and ,[4] A weak equivalence between shifts of finite type. Adv. Appl. Math. 29 (2002) 2, 162-171. | MR | Zbl
and ,[5] Minimal automaton for a factorial transitive rational language. Theoret. Comput. Sci. 67 (1985), 65-73. | MR | Zbl
,[6] Systèmes codés. Theoret. Comput. Sci. 44 (1986), 17-49. | MR | Zbl
and ,[7] Almost markov and shift equivalent sofic systems, Proceedings of Maryland Special Year in Dynamics 1986-87 (J.C. Alexander, ed.). Lect. Notes Math. 1342 (1988), pp. 33-93. | MR | Zbl
and ,[8] Codage symbolique, Masson (1993).
,[9] Wreath product and infinite words. J. Pure Appl. Algebra 153 (2000), 129-150. | MR | Zbl
,[10] L‘équivalence faible des systèmes sofiques, Master's thesis, LIAFA, Université Paris VII, July 2003, Rapport de stage de DEA.
,[11] Pseudovarieties defining classes of sofic subshifts closed under taking shift equivalent subshifts. J. Pure Appl. Algebra 209 (2007), 517-530. | MR | Zbl
,[12] Automata, languages and machines, vol. B, Academic Press, New York, 1976. | MR | Zbl
,[13] Sofic systems and graphs. Monatsh. Math. 80 (1975), 179-186. | EuDML | MR | Zbl
,[14] Endomorphims and automorphisms of the shift dynamical system. Math. Syst. Theor. 3 (1969), 320-375. | MR | Zbl
,[15] On sofic systems. i. Israel J. Math. 48 (1984), 305-330. | MR | Zbl
,[16] An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge (1996). | MR | Zbl
and ,[17] Topological conjugacy for sofic systems. Ergod. Theory Dyn. Syst. 6 (1986), 265-280. | MR | Zbl
,[18] Infinite words, Pure and Applied Mathematics, No. 141, Elsevier, London, 2004. | Zbl
and ,[19] Varieties of formal languages, Plenum, London (1986), English translation. | MR | Zbl
,[20] Syntactic semigroups, Handbook of Language Theory (G. Rozenberg and A. Salomaa, eds.), Springer (1997). | MR
,Cité par Sources :