Episturmian morphisms constitute a powerful tool to study episturmian words. Indeed, any episturmian word can be infinitely decomposed over the set of pure episturmian morphisms. Thus, an episturmian word can be defined by one of its morphic decompositions or, equivalently, by a certain directive word. Here we characterize pairs of words directing the same episturmian word. We also propose a way to uniquely define any episturmian word through a normalization of its directive words. As a consequence of these results, we characterize episturmian words having a unique directive word.
Mots-clés : episturmian word, sturmian word, Arnoux-Rauzy sequence, episturmian morphism, directive word
@article{ITA_2009__43_2_299_0, author = {Glen, Amy and Lev\'e, Florence and Richomme, Gw\'ena\"el}, title = {Directive words of episturmian words : equivalences and normalization}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {299--319}, publisher = {EDP-Sciences}, volume = {43}, number = {2}, year = {2009}, doi = {10.1051/ita:2008029}, mrnumber = {2512261}, zbl = {1166.68034}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2008029/} }
TY - JOUR AU - Glen, Amy AU - Levé, Florence AU - Richomme, Gwénaël TI - Directive words of episturmian words : equivalences and normalization JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 299 EP - 319 VL - 43 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2008029/ DO - 10.1051/ita:2008029 LA - en ID - ITA_2009__43_2_299_0 ER -
%0 Journal Article %A Glen, Amy %A Levé, Florence %A Richomme, Gwénaël %T Directive words of episturmian words : equivalences and normalization %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 299-319 %V 43 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2008029/ %R 10.1051/ita:2008029 %G en %F ITA_2009__43_2_299_0
Glen, Amy; Levé, Florence; Richomme, Gwénaël. Directive words of episturmian words : equivalences and normalization. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 2, pp. 299-319. doi : 10.1051/ita:2008029. http://archive.numdam.org/articles/10.1051/ita:2008029/
[1] Automatic sequences: Theory, Applications, Generalizations. Cambridge University Press (2003). | MR | Zbl
and ,[2] Représentation géométrique de suites de complexités . Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | MR | Zbl
and ,[3] Sturmian and episturmian words (a survey of some recent results), in Proceedings of CAI 2007. Lect. Notes Comput. Sci., Vol. 4728. Springer-Verlag (2007). | Zbl
,[4] Initial powers of Sturmian sequences. Acta Arith. 122 (2006) 315-347. | MR | Zbl
, and ,[5] Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255 (2001) 539-553. | MR | Zbl
, and ,[6] Complexity of sequences and dynamical systems. Discrete Math. 206 (1999) 145-154. | MR | Zbl
,[7] On Sturmian and episturmian words, and related topics. Ph.D. thesis, The University of Adelaide, Australia (2006). | Zbl
,[8] A characterization of fine words over a finite alphabet. Theoret. Comput. Sci. 391 (2008) 51-60. | MR | Zbl
,[9] Episturmian words: a survey. RAIRO-Theor. Inf. Appl. (submitted). e-print arxiv:0801.1655 (2007). | Numdam | MR
and ,[10] Characterizations of finite and infinite episturmian words via lexicographic orderings. Eur. J. Combin. 29 (2008) 45-58. | MR | Zbl
, and ,[11] Quasiperiodic and Lyndon episturmian words. Theoret. Comput. Sci. DOI: 10.1016/j.tcs.2008.09.056. | MR | Zbl
, and ,[12] Représentation par des transvections des groupes d'artin-tits. Group Geom. Dyn. 1 (2007) 111-133. | MR | Zbl
,[13] Episturmian words and episturmian morphisms. Theoret. Comput. Sci. 276 (2002) 281-313. | MR | Zbl
and ,[14] On a characteristic property of Arnoux-Rauzy sequences. RAIRO-Theor. Inf. Appl. 36 (2003) 385-388. | Numdam | MR | Zbl
and ,[15] Episturmian words: shifts, morphisms and numeration systems. Int. J. Found. Comput. Sci. 15 (2004) 329-348. | MR | Zbl
and ,[16] Quasiperiodic infinite words: some answers. Bull. Eur. Assoc. Theor. Comput. Sci. 84 (2004) 128-138. | MR | Zbl
and ,[17] Quasiperiodic episturmian words2007).
and ,[18] Quasiperiodic Sturmian words and morphisms. Theoret. Comput. Sci. 372 (2007) 15-25. | MR | Zbl
and ,[19] Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Vol. 17. Addison-Wesley (1983). | MR | Zbl
,[20] Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Vol. 90, Cambridge University Press (2002). | MR | Zbl
,[21] Symbolic Dynamics II. Sturmian trajectories. Amer. J. Math. 61 (1940) 1-42. | JFM | MR
and ,[22] A characterization of balanced episturmian sequences. Electron. J. Combin. 14 (2007) 33. | MR | Zbl
and ,[23] Substitutions in dynamics, arithmetics and combinatorics. Lect. Notes Math., Vol. 1794. Springer (2002). | MR | Zbl
,[24] Nombres algébriques et substitutions. Bull. Soc. Math. France 110 (1982) 147-178. | Numdam | MR | Zbl
,[25] Mots infinis en arithmétique, in Automata on Infinite words, edited by M. Nivat, D. Perrin. Lect. Notes Comput. Sci., Vol. 192. Springer-Verlag, Berlin (1985). | MR | Zbl
,[26] Conjugacy and episturmian morphisms. Theoret. Comput. Sci. 302 (2003) 1-34. | MR | Zbl
,[27] Lyndon morphisms. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 761-785. | MR | Zbl
,[28] Conjugacy of morphisms and Lyndon decomposition of standard Sturmian words. Theoret. Comput. Sci. 380 (2007) 393-400. | MR | Zbl
,[29] A local balance property of episturmian words, in Proc. DLT '07. Lect. Notes Comput. Sci., Vol. 4588. Springer, Berlin (2007) 371-381. | MR
,[30] A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith. 95 (2000) 167-184. | MR | Zbl
and ,[31] Fibonacci morphisms and Sturmian words. Theoret. Comput. Sci. 88 (1991) 365-384. | MR | Zbl
,[32] Some remarks on invertible substitutions on three letter alphabet. Chinese Sci. Bull. 44 (1999) 1755-1760. | MR | Zbl
and ,Cité par Sources :