From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.
Mots-clés : unilateral contact, variational inequalities, finite elements, a priori and a posteriori analysis
@article{M2AN_2009__43_1_33_0, author = {Ben Belgacem, Faker and Bernardi, Christine and Blouza, Adel and Vohral{\'\i}k, Martin}, title = {A finite element discretization of the contact between two membranes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {33--52}, publisher = {EDP-Sciences}, volume = {43}, number = {1}, year = {2009}, doi = {10.1051/m2an/2008041}, mrnumber = {2494793}, zbl = {1157.74036}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2008041/} }
TY - JOUR AU - Ben Belgacem, Faker AU - Bernardi, Christine AU - Blouza, Adel AU - Vohralík, Martin TI - A finite element discretization of the contact between two membranes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 33 EP - 52 VL - 43 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2008041/ DO - 10.1051/m2an/2008041 LA - en ID - M2AN_2009__43_1_33_0 ER -
%0 Journal Article %A Ben Belgacem, Faker %A Bernardi, Christine %A Blouza, Adel %A Vohralík, Martin %T A finite element discretization of the contact between two membranes %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 33-52 %V 43 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2008041/ %R 10.1051/m2an/2008041 %G en %F M2AN_2009__43_1_33_0
Ben Belgacem, Faker; Bernardi, Christine; Blouza, Adel; Vohralík, Martin. A finite element discretization of the contact between two membranes. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 1, pp. 33-52. doi : 10.1051/m2an/2008041. http://archive.numdam.org/articles/10.1051/m2an/2008041/
[1] Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differential Equations 9 (1993) 23-33. | MR | Zbl
, and ,[2] Nonlinear interaction problems. Nonlinear Anal. Theory Methods Appl. 20 (1993) 27-61. | MR | Zbl
and ,[3] Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques & Applications 45. Springer-Verlag (2004). | MR | Zbl
, and ,[4] Sur la régularité de la solution d'inéquations elliptiques. Bull. Soc. Math. France 96 (1968) 153-180. | Numdam | MR | Zbl
and ,[5] Error estimates for the finite element solution of variational inequalities, II. Mixed methods. Numer. Math. 31 (1978-1979) 1-16. | MR | Zbl
, and ,[6] Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. | MR | Zbl
and ,[7] The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, New York, Oxford (1978). | MR | Zbl
,[8] Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17-351. | MR | Zbl
,[9] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 R2 (1975) 77-84. | Numdam | MR | Zbl
,[10] Analyse convexe et problèmes variationnels. Dunod & Gauthier-Villars (1974). | MR | Zbl
and ,[11] Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | MR | Zbl
and ,[12] Elliptic Problems in Nonsmooth Domains. Pitman (1985). | MR | Zbl
,[13] Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1996) 313-485. | MR | Zbl
, and ,[14] Residual a posteriori error estimators for contact problems in elasticity. ESAIM: M2AN 41 (2007) 897-923. | Numdam | MR | Zbl
and ,[15] Variational inequalities. Comm. Pure Appl. Math. 20 (1967) 493-519. | MR | Zbl
and ,[16] Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003) 163-195. | MR | Zbl
, and ,[17] Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris Sér. A-B 286 (1978) A791-A794. | MR | Zbl
,[18] Mixed formulations for a class of variational inequalities. ESAIM: M2AN 38 (2004) 177-201. | Numdam | MR | Zbl
, and ,[19] A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). | Zbl
,[20] An a posteriori error estimator for two body contact problems on non-matching meshes. J. Sci. Computing 33 (2007) 25-45. | MR | Zbl
,Cité par Sources :