A multilevel preconditioner based on the abstract framework of the auxiliary space method, is developed for the mortar method for the nonconforming finite element or the lowest order Crouzeix-Raviart finite element on nonmatching grids. It is shown that the proposed preconditioner is quasi-optimal in the sense that the condition number of the preconditioned system is independent of the mesh size, and depends only quadratically on the number of refinement levels. Some numerical results confirming the theory are also provided.
Mots-clés : Crouzeix-Raviart FE, mortar method, multilevel preconditioner, auxiliary space method
@article{M2AN_2009__43_3_429_0, author = {Rahman, Talal and Xu, Xuejun}, title = {A multilevel preconditioner for the mortar method for nonconforming $P_1$ finite element}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {429--444}, publisher = {EDP-Sciences}, volume = {43}, number = {3}, year = {2009}, doi = {10.1051/m2an/2009003}, mrnumber = {2527400}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2009003/} }
TY - JOUR AU - Rahman, Talal AU - Xu, Xuejun TI - A multilevel preconditioner for the mortar method for nonconforming $P_1$ finite element JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 429 EP - 444 VL - 43 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2009003/ DO - 10.1051/m2an/2009003 LA - en ID - M2AN_2009__43_3_429_0 ER -
%0 Journal Article %A Rahman, Talal %A Xu, Xuejun %T A multilevel preconditioner for the mortar method for nonconforming $P_1$ finite element %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 429-444 %V 43 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2009003/ %R 10.1051/m2an/2009003 %G en %F M2AN_2009__43_3_429_0
Rahman, Talal; Xu, Xuejun. A multilevel preconditioner for the mortar method for nonconforming $P_1$ finite element. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 3, pp. 429-444. doi : 10.1051/m2an/2009003. http://archive.numdam.org/articles/10.1051/m2an/2009003/
[1] Subtructuring preconditioners for finite element methods on nonmatching grids. J. Numer. Math. 3 (1995) 1-28. | MR | Zbl
and ,[2] Substructuring preconditioner for the mortar element method. Numer. Math. 71 (1995) 419-449. | MR | Zbl
, and ,[3] Iterative substructing preconditioners for mortar element methods in two dimensions. SIAM J. Numer. Anal. 36 (1999) 551-580. | MR | Zbl
, and ,[4] The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-198. | MR | Zbl
,[5] The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289-302. | EuDML | Numdam | MR | Zbl
and ,[6] A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications, Vol. XI, Collège de France Seminar, H. Brezis and J.L. Lions Eds., Pitman Research Notes in Mathematics Series 299, Longman Scientific & Technical, Harlow (1994) 13-51. | MR | Zbl
, and ,[7] Stability estimates of the mortar finite element method for 3-dimensional problems. J. Numer. Math. 6 (1998) 249-264. | MR | Zbl
and ,[8] A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37 (2000) 48-69. | MR | Zbl
, and ,[9] A subspace cascadic multigrid method for the mortar elements. Computing 69 (2002) 202-225. | MR | Zbl
, and ,[10] Preconditioning complicated finite elements by simple finite elements. SIAM J. Sci. Comput. 17 (1996) 1269-1274. | MR | Zbl
,[11] The Finite Element Method for Elliptic Problem. North-Holland, Amsterdam (1978). | MR | Zbl
,[12] An iterative substructuring method for elliptic mortar finite element problems with discontinous coefficients, in Domain Decomposition Methods 10, J. Mandel, C. Farhat and X.C. Cai Eds., Contemp. Math. 218 (1998) 94-103. | MR | Zbl
,[13] Multilevel additive Schwarz preconditioner for nonconforming mortar finite element methods. J. Numer. Math. 12 (2004) 23-38. | MR | Zbl
, , and ,[14] Multigrid for the mortar finite element method. SIAM J. Numer. Anal. 37 (2000) 1029-1052. | MR | Zbl
and ,[15] Adaptive multilevel iterative techniques for nonconforming finite element discretizations. J. Numer. Math. 3 (1995) 179-198. | MR | Zbl
and ,[16] Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39 (2001) 519-538. | MR | Zbl
, , and ,[17] The mortar element method with locally nonconforming elements. BIT Numer. Math. 39 (1999) 716-739. | MR | Zbl
,[18] Additive Schwarz method for mortar discretization of elliptic problems with nonconforming finite element. BIT Numer. Math. 45 (2005) 375-394. | MR | Zbl
,[19] Neumann - Neumann algorithms for a mortar Crouzeix-Raviart element for 2nd order elliptic problems. BIT Numer. Math. 48 (2008) 607-626. | MR | Zbl
and ,[20] Fictitious components and subdomain alternating methods. Sov. J. Numer. Anal. Math. Modelling 5 (1990) 53-68. | MR | Zbl
,[21] Preconditioners for nonconforming elements. Math. Comp. 65 (1996) 923-941. | MR | Zbl
,[22] Additive Schwarz method for the Crouzeix-Raviart mortar finite element for elliptic problems with discontinuous coefficients. Numer. Math. 101 (2005) 551-572. | MR | Zbl
, and ,[23] Crouzeix-Raviart FE on nonmatching grids with an approximate mortar condition. SIAM J. Numer. Anal. 46 (2008) 496-516. | MR | Zbl
, and ,[24] Schwarz Preconditioners for Elliptic Problems with Discontinuous Coefficients Using Conforming and Nonconforming Elements. Tech. Report 671, Ph.D. Thesis, Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, USA (1994).
,[25] Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using nonconforming elements. Numer. Math. 77 (1997) 383-406. | MR | Zbl
,[26] Multigrid for the Wilson mortar element method. Comput. Methods Appl. Math. 1 (2001) 99-112. | EuDML | MR | Zbl
and ,[27] An application of the abstract multilevel theory to nonconforming finite element methods. SIAM J. Numer. Anal. 32 (1995) 235-248. | MR | Zbl
and ,[28] A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989-1012. | MR | Zbl
,[29] A multigrid method for saddlepoint problems arising from mortar finite element discretizations. Electron. Trans. Numer. Anal. 11 (2000) 43-54. | EuDML | MR | Zbl
,[30] Theory of Multilevel Methods. Ph.D. Thesis, Cornell University, USA (1989).
,[31] Iterative methods by space decomposition and subspace correction. SIAM Rev. 34 (1992) 581-613. | MR | Zbl
,[32] The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grid. Computing 56 (1996) 215-235. | MR | Zbl
,[33] Multigrid for the mortar element method for nonconforming element. Numer. Math. 88 (2001) 381-398. | MR | Zbl
and ,[34] Old and new convergence proofs for multigrid methods. Acta Numer. (1993) 285-326. | MR | Zbl
,[35] Treatments of discontinuity and bubble functions in the multigrid method. Math. Comp. 66 (1997) 1055-1072. | MR | Zbl
and ,Cité par Sources :