Stable upwind schemes for the magnetic induction equation
ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 5, pp. 825-852.

We consider the magnetic induction equation for the evolution of a magnetic field in a plasma where the velocity is given. The aim is to design a numerical scheme which also handles the divergence constraint in a suitable manner. We design and analyze an upwind scheme based on the symmetrized version of the equations in the non-conservative form. The scheme is shown to converge to a weak solution of the equations. Furthermore, the discrete divergence produced by the scheme is shown to be bounded. We report several numerical experiments that show that the stable upwind scheme of this paper is robust.

DOI : 10.1051/m2an/2009006
Classification : 65M12, 35L65
Mots-clés : conservation laws, induction equation, divergence constraint, upwinded source terms
@article{M2AN_2009__43_5_825_0,
     author = {Fuchs, Franz G. and Karlsen, Kenneth H. and Mishra, Siddharta and Risebro, Nils H.},
     title = {Stable upwind schemes for the magnetic induction equation},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {825--852},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {5},
     year = {2009},
     doi = {10.1051/m2an/2009006},
     mrnumber = {2559735},
     zbl = {1177.78057},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2009006/}
}
TY  - JOUR
AU  - Fuchs, Franz G.
AU  - Karlsen, Kenneth H.
AU  - Mishra, Siddharta
AU  - Risebro, Nils H.
TI  - Stable upwind schemes for the magnetic induction equation
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2009
SP  - 825
EP  - 852
VL  - 43
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2009006/
DO  - 10.1051/m2an/2009006
LA  - en
ID  - M2AN_2009__43_5_825_0
ER  - 
%0 Journal Article
%A Fuchs, Franz G.
%A Karlsen, Kenneth H.
%A Mishra, Siddharta
%A Risebro, Nils H.
%T Stable upwind schemes for the magnetic induction equation
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2009
%P 825-852
%V 43
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2009006/
%R 10.1051/m2an/2009006
%G en
%F M2AN_2009__43_5_825_0
Fuchs, Franz G.; Karlsen, Kenneth H.; Mishra, Siddharta; Risebro, Nils H. Stable upwind schemes for the magnetic induction equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 5, pp. 825-852. doi : 10.1051/m2an/2009006. http://archive.numdam.org/articles/10.1051/m2an/2009006/

[1] D.S. Balsara and D. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comp. Phys. 149 (1999) 270-292. | MR | Zbl

[2] T.J. Barth, Numerical methods for gas dynamics systems, in An introduction to recent developments in theory and numerics for conservation laws, D. Kröner, M. Ohlberger and C. Rohde Eds., Springer (1999). | MR | Zbl

[3] S. Benzoni-Gavage and D. Serre, Multidimensional hyperbolic, Partial differential equations - First-order systems and applications, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2007). | MR | Zbl

[4] N. Besse and D. Kröner, Convergence of the locally divergence free discontinuous Galerkin methods for induction equations for the 2D-MHD system. ESAIM: M2AN 39 (2005) 1177-1202. | Numdam | MR | Zbl

[5] J.U. Brackbill and D.C. Barnes, The effect of nonzero divB on the numerical solution of the magnetohydrodynamic equations. J. Comp. Phys. 35 (1980) 426-430. | MR | Zbl

[6] W. Dai and P.R. Woodward, A simple finite difference scheme for multi-dimensional magnetohydrodynamic equations. J. Comp. Phys. 142 (1998) 331-369. | MR | Zbl

[7] C. Evans and J.F. Hawley, Simulation of magnetohydrodynamic flow: a constrained transport method. Astrophys. J. 332 (1998) 659.

[8] F.G. Fuchs, S. Mishra and N.H. Risebro, Splitting based finite volume schemes for ideal MHD equations. J. Comp. Phys. 228 (2009) 641-660. | MR

[9] S.K. Godunov, The symmetric form of magnetohydrodynamics equation. Num. Meth. Mech. Cont. Media 1 (1972) 26-34.

[10] J.D. Jackson, Classical Electrodynamics. Third Edn., Wiley (1999). | MR | Zbl

[11] V. Jovanovič and C. Rohde, Finite volume schemes for Friedrichs systems in multiple space dimensions: a priori and a posteriori error estimates. Num. Meth. PDE 21 (2005) 104-131. | MR | Zbl

[12] R.J. Leveque, Finite volume methods for hyperbolic problems. Cambridge University Press (2002). | MR | Zbl

[13] G.K. Parks, Physics of Space Plasmas: An Introduction. Addition-Wesley (1991).

[14] K.G. Powell, A approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical report 94-24, ICASE, Langley, VA, USA (1994).

[15] K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi and D.L. De Zeeuw, A solution adaptive upwind scheme for ideal MHD. J. Comp. Phys. 154 (1999) 284-309. | MR | Zbl

[16] J. Rossmanith, A wave propagation method with constrained transport for shallow water and ideal magnetohydrodynamics. Ph.D. Thesis, University of Washington, Seattle, USA (2002).

[17] D.S. Ryu, F. Miniati, T.W. Jones and A. Frank, A divergence free upwind code for multidimensional magnetohydrodynamic flows. Astrophys. J. 509 (1998) 244-255.

[18] M. Torrilhon, Locally divergence preserving upwind finite volume schemes for magnetohyrodynamic equations. SIAM. J. Sci. Comp. 26 (2005) 1166-1191. | MR | Zbl

[19] M. Torrilhon and M. Fey, Constraint-preserving upwind methods for multidimensional advection equations. SIAM. J. Num. Anal. 42 (2004) 1694-1728. | MR | Zbl

[20] G. Toth, The divB = 0 constraint in shock capturing magnetohydrodynamics codes. J. Comp. Phys. 161 (2000) 605-652. | MR | Zbl

[21] J-P. Vila and P. Villedeau, Convergence of explicit finite volume scheme for first order symmetric systems. Numer. Math. 94 (2003) 573-602. | MR | Zbl

Cité par Sources :